
ADST-93-W=0015 28 May IM9

III AD-A283 349 AI Illl~lIll 11111| Ii1IiilIIi} i1~ll

I
* Advanced Distributed Simulation Technology

Distributed Interactive Simulation
Protocol Extensions

CONTRACT NO. N61339-91-D-001

DTIC CDRL SEQUENCE NO. AOOA

*ELECTE Prepared for.
AUG 2 41994 DI

I
US Army

Simulation, Training, and Instrumentation Command
________________________ =-12350 Research ParkwayI s docum e.ne• p , Orlando, FL 32826

1public reloe. INa~q ~
= ter. Prepared by:

Systems Company

I ADST Program Office
12433 Research Parkway Suite 303

Orlando, FL 32826

| 94-26754S94I 8 22i1\2

1 94 822 1•29

ADST-93-W003015 28 May 1993

I Form approved

REPORT DOCUMENTATION PAGE OMBNo 0704 088
iutho reporting burden for itts coeotion ot uorm•ion is eusriam to average 1 hour per response. inludmg tie s tor rneetg irstru-tons. searcning exising data sources.
gathenng and maintaining the data needed, and wmplang and reviwing the cdolechon of dormuon. sn contnnts regardg this burden esurmate or any other aspect of
Ut colr ton ot iformnation. tWuding suggestions lot reduoing Its burden. to Washtington Headquanes Servcsns. Directorate lt infomion Operatons and Reports. 1215
Jetferon Uavs Hlgnway. Surte 1204. Afngton. VA 22202430, and to the (Jice of W..lgernerf and Budge Protect (0704.0188t. Washtngton. XC 20503.

1. AGENCY USE ONLY (Leave bl*) X REPORT DATE 3. REPORT TYPE AND DATES COVERED
1 5/28/93 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Distributed Interactive Simulation C
Protocol Extensions N61339-91-D-0001

6. AUTHOR(S)
O'Brien, Sheila CDRL AOOA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 1. PERFORMING ORGANIZATION
REPORT NUMBEER

BDM Federal, Inc.
ADST/TR-93-003015

ADST Program Office

12443 Research Parkway, Suite 303
Orlando, FL 32826
9. SPONSORINGIMONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING
Simulator Training and Instrumentation Loral Systems Company ORGANIZATION REPORTSCommand (STRICOM) ADST Program Office
12350 Research Parkway 12443 Research Parkway
Orlando, FL 32826-3275 Suite 303

Orlando, FL_32826 ____ ________I 11. SUPPLEMENTARY NOTES

S12a. DISTRIBUTIOWAVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

I
13. ABSTRACT (Maximurn 200 words)

The purpose of this document is to report on the on going changes and extensions to the DIS and SIMNET
protocols which are a result of ADST-related activity and where possible activities outside the ADST contract.
This report reflects the ADST Program Management Office's effort to provide a central point of coordination
and technical oversight for all proposed PDUs and PDU changes. This is an effort to ensure that all PDUs
developed and proposed have the widest possible applicability in the D[S community as well as ensuring no
duplication of effort.

14. SUBJECT TERMS 1. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT UL
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)Prvo~d by ANSI ,S Z:9-18
291-102

I

1
I t TABLE OF CONTENTS

1

2 Scope ... 1

2.1. Protocol Extension Process .. 1

3 Applicable Documents ... 2

I4 Summary of ADST Activities.. 4
4.1. Delivery Orders .. 4

S4.1.1. Active Delivery Orders .. 4

4.1.1.1. AIRNET AeroModel & Weapons Model Conversion 4

4.1.1.2. BDS-D Architecture Definition & DIS Standards
Development .. 4

4.1.1.3. Battlefield Synchronization Demonstration 4

4.1.1.4. CGF Architecture & Integration of Higher Order
M odels .. 4

4.1.1.5. CSRDF - BDS-D Interface .. . 5

4.1.1.6. CVCC '93 Tests .. 5

S4.1.1.7. DOTD Training Delivery Order ... 5

4.1.1.8. Jayhawk Thunder ... 5

4.1.1.9. BDS-D System Definition Support ... 5

4.1.1.10. ModSAF 5

4.1.1.11. MultiRad / War Breaker ... 5

4.1.1.12. Non-Line of Sight, Phase 2 ... 6

4.1.1.13. X-Rod (Experimental Anti-Tank Missile) 6

4.1.1.14. Vehicle Integrated Defense Systems ... 6

4.1.2. Potential Delivery Orders .. 6

4.1.2.1. BDS-D Testbed ... 6

S4.1.2.2. Directorate of Simulation Training Development Test 6

4.1.2.3. Project Sword ... 6

4.1.2.4. Prairie Warrior .. 7

4.1.2.5. Louisiana Maneuvers 94 .. 7

4.1.2.6. Jayhawk Thunder I1 .. 7

4.1.2.7. Project Stingray .. 7

4.1.2.8. Anti-Armor ATD .. 7

4.1.3. Completed Delivery Orders ... 7

iI

I
4.1.3.1. Hollis Experiment ... 7

4.1.3.2. Land Systems Future Battlefield .. 7 7

4.1.3.3. Leavenworth Node .. 7

4.1.3.4. Seamless Simulation Experiment .. 7

4.1.3.5. Smart Minefield Simulator .. 7

4.1.3.6. CVCC Battalion Formative Evaluation .. 7

4.2. LSE Tasks .. 7
4.2.1. Active LSE Tasks ... 8

4.2.1.1. LSE Systems Engineering ... 8

4.2.1.2. M1A2 Training Developments ... 8
4.2.1.3. Electronic Inforr'ation Exchange Network 8
4.2.1.4. Software Support/Configuration Management 8

4.2.1.5. Line of Sight, Anti-Tank ... 8
4.2.1.6. HEL Intelligibility Study .. 8
4.2.1.7. Software Development Facility 8

4.2.2. Potential LSE Tasks .. 8

4.2.3. Completed LSE Tasks ... 8
4.2.3.1. ATAC II .. 8

5 Summary of Related non-ADST activities 9
5.1. DIS Standards Process .. 9
5.1.1. 8th Workshop... 12

5.1.1.1. IEEE Standards Progress ... 12

5.1.2. 7th Workshop ... 12 U
5.1.2.1. Discussion of potential changes to DIS Protocol 12

5.1.2.1.1. • Entity State PDU .. 12
5.1.2.1.2. Collision PDU .. 13

5.1.2.1.3. Simulation Management .. 13

5.1.2.1.4. Emissions .. 14

5.1.2.1.5. Radio Communications ... 14

5.1.2.2. Discussion of Potential additions to the DIS Protocol 14

5.1.2.2.1. Dynamic Terrain PDU/Protocol 14

5.1.2.2.2. Environment PDU .. 14

5.1.2.2.3. Newtonian Protocol 14 3
5.1.2.2.4. Mount/Dismount PDU .. 15

I
ii

I

I
5.1.2.2.5. Concatenated PDU ... 15

5.1.22-6. Aggregate Protocol Extension .. 15

5.1.2.2.7. Assume Control Protocol .. 15

I 5.1.3. Summary of Changes made for the December '92 IEEE
Reballot ... 15

5.1.3.1. Minor changes made for the IEEE reballot 16

5.1.3.2. ITMC working group recommendations 16
5.2. 13th I/1TSEC Lessons Learned ... 17

5.3. A LSP ... 17

I 5.4. J-M A SS ... 17

Appendix A: Protocol Extension Template .. A -1
Appendix B: DIS Protocol Extensions .. B - 1

Appendix Bi: C31 Protocol Extension .. B1 - 1

Appendix B2: Digital Message Communications
Protocol Extension .. B2 - 1

Appendix C: SIMNET Protocol Extensions .. C - 1
Appendix Cl: Smart Mines Simulation Protocol Extension C1 -W1
Appendix C2: Data Collection Protocol .. C2 -1

Appendix C3: Missile Server Protocol ... C3 -1
Appendix C4: CVCC Protocol Extension .. C4 -1

Appendix C.: MultiRad Protocol Extensions ... C5 - 1
Appendix C6: Persistent Object Protocol .. C6 - 1

Appendix C7: VIDS Protocol Extension .. C7 -1

Accesion For

NTIS CRA&I

DI IC TAB 5
Unannounced 0

iJustification

By

Dist,,ibution I
I Availabtlity Codes

Avail andlor
Dist Special

I

I
LIST OF TABLES AND FIGURES

Figure 1. Standardization Activity for the DIS Protocol Standard 10

Table 1. Distributed Interactive Simulation ... 11

Table 2. Status of Standards Documents ... 12 3
I

I
i

I
I
I
I
I

I
I

iv I
I

I

1 INTRODUCTION

The purpose of this document is to report on the on going changes and
extensions to the DIS and SIMNET application protocols which are a result of
ADST-related activity and where possible activities outside the ADST contract.
This report reflects the ADST Program Management Office's effort to provide a
central point of coordination and technical oversight for all proposed PDUs and
PDU changes. This is an effort to ensure that all PDUs developed and proposed
have the widest possible applicability in the DIS community as well as ensuring
no duplication of effort.

* 2 SCOPE

This document contains a revision to the Advanced Distributed Simulation
Technology (ADST) DIS and SIMNET Protocol Extensions Summary. It is
organized into five sections and three appendixes including (1) Introduction, (2)
Scope, (3) Applicable Document, (4) Summary of Protocol Extensions for ADST
Activities, (5) Summary of Protocol Extensions for Other Activities, Appendix A:
Protocol Extension Template, Appendix B: DIS Protocol Extensions, and
Appendix C SIMNET Protocol Extensions.
The information provided for each Delivery Order (DO) is related to protocol
extensions only. For a more complete summary of each DO, see the Advanced
Distributed Simulation Technology (ADST) Delivery Order Summary Handbook
[Loral 1993a].
This version is a summary of the continuing survey of all ADST LSE and
Delivery Order activities that are proposing and making extensions to either the
DIS or SIMNET protocol. This version also includes a summary of the protocol
related activities of the 8th workshop on Standards for the Interoperability of
Defense Simulations.

2.1. PROTOCOL EXTENSION PROCESS

Previous versions of this report were titled "Candidate DIS and SIMNET Protocol
Extensions". The title has been changed to reflect the evolving character of the
document. This version of the document has been reorganized so that this
document can support the configuration management of protocol extensions.
The body of the document is a summary of ADST and non-ADST protocol
activities and the appendices contain complete documentation of each protocol
extensions that have been implemented by ADST DO and LSE activities.

Appendix A defines a template for documenting protocol extensions. Protocol
extensions undertaken by the ADST program will be documented using this
format and added to appendix B or C of this document.I

I!
I

1
3 APPLICABLE DOCUMENTS

Loral, 1993a ADST Delivery Order Summaries: Dec 1992 - Feb 1993, Loral
Systems Company, February 1993.

Loral, 1993b Distributed Interactive Simulation Architecture Description
Document, Loral Systems Company, ADST/TR-93-003010,
28 May 1993.

IEEE, 1993 1278-1993, Standard for Information Technology, Protocols
for Distributed Interactive Simulation Applications, IEEE, UNew York, NY, March 1993

IST, 1992a Military Standard (Final Draft): Protocol Data Units for
Entity Information and Entity Interaction in a Distributed
Interactive Simulation, IST-PD-91-1, UCF Institute for
Simulation and Training, May 8, 1992.

IST, 1992b Summary Report, The Seventh Workshop on Standards for
the Interoperability of Defense Simulations, IST-CF-92-17,
UCF Institute for Simulation and Training, September 1992. n

IST, 1993a Proposed IEEE Standard Draft: Standard for Information
Technology - Protocols for Distributed Interactive
Simulatiorn Applications, Version 2.0 - Second Draft, IST-CR-
93-01, UCF Institute for Simulation and Training, 22 March
1993.

IST, 1993b Enumeration and Bit Encoded Values for Use with Protocols
for Distributed Interactive Simulation Applications, Version
2.0 - Second Draft, IST-CR-93-02, UCF Institute for
Simulation and Training, 22 March 1993.

IST, 1993c Operational Concept for Distributed Interactive Simulation
Draft 2.2, IST-TR-93-10, UCF Institute for Simulation &
Training, March 1993.

IST, 1993d Standards Development Guidance Document for Distributed
Interactive Simulation Standards Development Draft 2.1,
IST-TR-93-11, UCF Institute for Simulation & Training, 1
March 1993.

IST, 1993e Proposed IEEE Draft Standard: Communication Architecture l
for Distributed Interactive Simulation (CADIS), IST-CR-93-
07, UCF Institute for Simulation & Training, March 1993. 3

IST, 1993f Rational Document for Proposed IEEE Draft Standard:
Communication Architecture for Distributed Interactive
Simulation (CADIS), iST-CR-93-08, UCF Institute for
Simulation & Training, March 1993.

2I

I
IST, 1993g Proposed IEEE Draft Standard: Exercise Control and

Performance Measures Feedback Requirements for
Distributed Interactive Simulation, IST-CR-93-05, UCF
Institute for Simulation & Training, March 1993.

IST, 1993h Rational Document for Proposed IEEE Draft Standard:
Exercise Control and Performance Measures Feedback
Requirements for Distributed Interactive Simulation, IST-
CR-93-06, UCF Institute for Simulation & Training, March
1993.

IST, 1993i Proposed IEEE Draft Standard: Fidelity Description
Requirements for Distributed Interactive Simulation, IST-
CR-93-04, UCF Institute for Simulation & Training, March
1993.

IST, 1993k Summary Report, The Eighth Workshop on Standards for
the Interoperability of Defense Simulations, IST-CF-93-10,
UCF Institute for Simulation and Training, March 1992.

I BBN, 1991 Arthur Pope, Richard L. Schaffer. The SIMNET Network and
Protocols BBN Report Number 7627, June 1991.

I
I
I
I
I

I_

I
I

I 3

I

I
4 SUMMARY OF ADST ACTIVITIES i

4.1. DELIVERY ORDERS

The following sections are an enumeration of the ADST program's delivery i
orders (DOs) and potential DOs; a discussion of the impact, if any, that the DOs
will have on protocol standards. Where applicable, the impact, if any, on
databases will also be reported.

4.1.1. Active Delivery Orders

4.1.1.1. AIRNET AeroModel & Weapons Model Conversion

The AirNet AeroModel and Weapons Model Delivery Order provides specific I
enhancements to the eight existing Rotary Wing Aircraft (RWA) devices at the Ft.
Rucker Aviation Testbed (AVTB). Increased Management Command and
Control (MCC) subsystem functionality will provide additional tables and menus
for supply and initialization of the RAH-66 Comanche. A new digital
communication function will be added, allowing messages to be sent to/from the
Tactical Operations Center (TOC), Fire Support Element (FSE), or Battlemaster
and the RWA devices. The exsting flight and weapons models will be replaced
with tunable models util. ing tables for defining aircraft and weapons
performance characteristics.

This effort has developed a new Digital Message Communications protocol
extension. This extension was developed in conjunction with 'ae DIS 2.0 U
Protocol Translator Gateway, developed under the CSRDF - BDS-D Interface DO,
see 4.1.1.5. This collaboraticit allows the DMC protocol extension to be used
within a SIMNET and/or DIS 2.0 (Draft) environment. This DO has I
implemented DIS 2.0 (Draft) Signal PDU's to carry tactical messages. This
protocol extension is documented in Appendix B2.

4.1.1.2. BDS-D Architecture Definition & DIS Standards Development

This activity has implemented no changes to the DIS or SIMNET Protocols.

4.1.1.3. Battlefield Synchronization Demonstration

This activity will implement no changes to the DIS or SIMNET Protocols. This I
activity will use the CVCC extensions of the SIMNET protocol that are described
in Appendix C4.

4.1.1.4. CGF Architecture & Integration of Higher Order Models

This activity will be a primary source for enhancements to the DIS protocol. This
effort will propose a C3I protocol and other enhancements to support the
expanding scope of the BDS-D virtual battlespace. These protocol enhancements
are described in Appendix Bi. e

4

S.. I I I I II

4.1.1.5. CSRDF - BDS-D Interface

At this time, this activity has not proposed any changes to the DIS protocol. This
activity will produce a protocol translator capability that will allow the CSRDF
system running DIS 1.0 Protocol to interoperate with the Ft. Rucker Simulators
running the older SIMNET 6.6.1 Protocol. This effort will be a potential source of
protocol changes in the future. This effort is utilizing the DMC protocol
extension developed under the AIRNET AeroModel & Weapons Model
Conversion DO (see 4.1.1.1).

4.1.1.6. CVCC '93 Tests

This activity will implement no changes to the DIS or SIMNET Protocols. This
activity will use the CVCC extensions of the SIMNET protocol that are described
in Appendix C4.

4.1.1.7. DOTD Training Delivery Order

This activity will implement no changes to the DIS or SIMNET Protocols.

4.1.1.8. Jayhawk Thunder

At this time, this activity has not proposed any changes to the DIS protocol. This
activity will use the C3I extensions of the DIS protocol that are described in
Appendix B1.

4.1.1.9. BDS-D System Definition Support

This activity will implement no changes to the DIS or SIMNET Protocols.

4.1.1.10. ModSAF

At this time, this activity has introduced no changes to the DIS or SIMNET
Protocols. This effort may propose changes to the SIMNET protocol in the future
and is scheduled to be DIS compliant. The Persistent Object Protocol that is used
by SIMNET SAFOR and ModSAF is documented in Appendix C6.

4.1.1.11. MultiRad / War Breaker

This effort provides for networked extensions to Air Force Weapon systems as
part of the networked Virtual Battlespace environment. Elements represented
include fixed wing, F-16 and F-15, Unmanned Air Vehicles (UAV), JSTARS and
Airborne Radar AWACS. The on-going Network Interface Unit (NIU)
development is particularly important in linking non-SIMNET systems to the
SIMNET Network as well as interfacing dissimilar simulation fidelity simulators.
The NIU will serve as an important prototype Cell Adapter Unit (CAU) as
defined in the DIS Architecture Document [Loral, 1993b]. The linking of existing
simulation assets utilizing NIU/CAU capabilities is critical for affordable
simulation network extension.

The SIMNET protocol extensions for this effort are further described in Appendix
C5.

5

I
4.1.1.12. Non-Line of Sight, Phase 2

This activity will implement no changes to the DIS or SIMNET Protocols.

4.1.1.13. X-Rod (Experimental Anti-Tank Missile)

This activity will implement nt, anges to the DIS or SIMNET Protocols.

4.1.1.14. Vehicle Integrated Defense Systems

The feasibility analysis performed under this delivery order recommended the
following changes to the SIMNET protocol: 1) create a new PDU to communicate
the presence of a non-tangible field (e.g. laser beams, acoustic signatures, smoke
clouds, etc.) 2) modify existing PDUs where necessary to increase descriptive
fields adding unique VIDS simulation data. This feasibility analysis was
performed to provide a design approach to conduct simulated threat
engagements using electronic survivability suites. These threat engagements
employ simulated sensor and countermeasure systems to provide measurements
of survivability effectiveness for various tactics, techniques, and procedures used
in conjunction with different configurations of the electronic survivability suites.
This simulation involves magnetic, optical, acoustic, and amorphous fields which
are either poorly covered or not covered at all by the present SIMNET. See
sections 5.7 - 5.9.

The approach consists of modifying manned M1 simulators to add Missile
Countermeasures Device (MCD), Laser Warning Receiver (LWR), Missile
Warning System (MWS), Multi-Salvo Grenade Launcher (MSGL) and counter fire

.models, controlled by emulated Threat Resolution Model (TRM) software and a
PC-based touch screen implementation of the VIDS Commander's Control and
Display Console (CCDP). The approach includes simulation of rapid turret
slewing as well as support for manual, semi-automatic and automatic VIDS
operational modes. The SAFOR system is also being modified to generate new
threat platforms and threats for simulated tactical combat engagements against
the VIDS-equipped Mls on the Hunter-Ligget database. New SIMNET PDUs
and smoke models are being developed in support of this approach.

The SIMNET protocol extension is documented in Appendix C6.

4.1.2. Potential Delivery Orders

4.1.2.1. BDS-D Testbed

This potential delivery order will provide a test bed for testing protocol
extensions and will also be a source of protocol extensions.

4.1.2.2. Directorate of Simulation Training Development Test I
At this time, this activity is not expected to change the DIS or SIMNET Protocols.

4.1.2.3. Project Sword

At this time, this activity is not expected to change the DIS or SIMNET Protocols.

I
I

I
4.1.2.4. Prairie Warrior

At this time, this activity is not expected to change the DIS or SIMNET Protocols.

4.1.2.5. Louisiana Maneuvers 94

At this time, this activity is not expected to change the DIS or SIMNET Protocols.

4.1.2.6. Jayhawk Thunder II

This potential delivery order will extended the C3I protocol extension developed
under Jayhawk Thunder, see Appendix B1.

4.1.2.7. Project Stingray

This potential DO could impact the DIS or SIMNET protocols.

4.1.2.8. Anti-Armor ATD

At this time, this activity is not expected to change the DIS or SIMNET protocols.

4.1.3. Completed Delivery Orders

4.1.3.1. Hollis Experiment

In support of the Hollis Experiment, enhancements were made to the SIMNET
data collection protocol, see Appendix C2.

4.1.3.2. Land Systems Future Battlefield

This activity implemented no changes to the DIS or SIMNET Protocols.

4.1.3.3. Leavenworth Node

This activity implemented no changes to the DIS or SvINET Protocols.

4.1.3.4. Seamless Simulation Experiment

This activity implemented no changes to the DIS or SIMNET Protocols.

4.1.3.5. Smart Minefield Simulator

* This activity has defined the Smart Mines Simulation Protocol to enhance the
SlINET Protocols. This Protocol is described in Appendix C1.

4.1.3.6. CVCC Battalion Formative Evaluation

This activity implemented no changes to the DIS or SIMNET Protocols. This
activity used the CVCC extensions of the SIMNET protocol that are described in
Appendix C4.

4.2. LSE TASKS

The following sections are an enumeration of the ADST program's Laboratory
Sustainment Effort, LSE, activities, and potential LSE activities; a discussion of

I
7I

I
the impact, if any, that the activity will have on protocol standards; and where
applicable the impact, if any, on databases.

4.2.1. Active LSE Tasks

4.2.1.1. LSE Systems Engineering I
This activity has implemented no changes to the DIS or SIMNET Protocols. But
is a source of guidance on protocol and database development.=I

4.2.1.2. MIA2 Training Developments

This activity has implemented no changes to the DIS or SlIMNET Protocols.i

4.2.1.3. Electronic Information Exchange Network

This activity has implemented no changes to the DIS or SIMNET Protocols.

4.2.1.4. Software Support/Configuration Management I
This activity has implemented no changes to the DIS or SIMNET Protocols.

4.2.1.5. Line of Sight, Anti-Tank

This activity has implemented no changes to the DIS or SIMNET Protocols.

4.2.1.6. HEL Intelligibility Study I
This activity has implemented no changes to the DIS or SIMNET Protocols.

4.2.1.7. Software Development Facility

This activity has implemented no changes to the DIS or SIMNET Protocols.

4.2.2. Potential LSE Tasks

NA_

4.2.3. Completed LSE Tasks

4.2.3.1. ATAC II I
In support of the Air to Air Combat II (ATAC 11) Delivery Order, a Missile Server
was added to the network to allow the firing of Hellfire missiles with a remote I
designator. Previously, missile flyout was limited by the 7 km range limitation of
the RWA device. The Missile Server handles missile flyout and enhances
intervisibility calculations. These enhancements were implemented using the I
Missile Server Protocol documented in Appendix C3.

8
I

I
5 SUMMARY OF RELATED NON-ADST ACTIVITIES

5.1. DIS STANDARDS PROCESS

In an effort to expand the use of distributed interactive simulation technology,
the DIS standards process was organized to develop industry-wide standards for
distributed simulation. The First Workshop on the Interoperability of Defense
Simulations was held in August of 1989. At this first DIS workshop, it was
decided to use the SIMNET protocols as the basis for development of the initial
DIS standard which would define the protocol for exchanging messages between
simulation applications. Workshops have been held biennially since that time
and have lead to the formal adoption in March 1993 of the Standard for
Information Technology - Protocols for Distributed Interactive Simulation Applications
[IEEE, 1993] as an Institute of Electrical and Electronics Engineers (IEEE)
standard. The DIS Workshops and the overall standards effort are coordinated
by the University of Central Florida's Institute for Simulation and Training with
funding initially from DARPA and currently from STRICOM and DMSO.
The DIS Workshops are continuing the development of Interoperability
standards for defense simulation. The DIS application protocols standard is the
first of the DIS standards to be formally adopted. Development is underway on
the following standards:

* Communication Architecture for Distributed Interactive Simulation
(CADIS) [IST, 1993e]I Fidelity Description Requirements [IST, 1993i]

* Exercise Control and Performance Measures Feedback Requirements
[IST, 1993g]

* Field Instrumentation

Other potential standards include:

* DIS Architecture

* Common Database Standard
For further information on the standards process see the Standards Development

* Guidance Document for Distributed Interactive Simulation Standards
Development lIST, 1993d].

As Version 1.0 of the standard began the process of the becoming an IEEE
standard, the working groups began working on Version 2.0. This version will
incorporate Simulation Management, Emissions capabilities, and Radio
Communications. The final draft of this version will be approved by the working
groups and begin the process of becoming an IEEE standard. Work will then
begin on Version 3.0 which will continue to expand the depth and breadth of the
virtual battlespace. Figure 1 is a summary schedule for the standardization of
Protocols for DIS Applications.

9
9

I

Orafteablk ataf Defense Sari I

Sirmulatin Version 1.0 Comlet 1at6r Re'"r

SalsdFigr e 2.maio Stadarmzako AciyfrteDSApiainPooo

Stanard 1.Irf rf atSadr

Table 1 is a summary of the current and future capabilities of the protocol.

10U

I
Table 1. Distributed Interactive Simulation

Current and Future Capabilities.
FUNCTION IMPLEMENTATION SIMNET DIS DIS DIS

6.6.1 1.0 2.0 3.0
Entity Appearance Appearance PDU Y

EntityStatePDU(1) Y Y Y
Weapons

DirectFire FirePDU Y Y Y V
indirectFira IndirectFirePDU Y

FirePDU(2) Y Y Y
Detonation ImpactPDU Y

DetonationPDU(3) Y Y Y
LogisticsSupport ServiceRequestPDU Y Y Y Y

ResupplyOfferPDU Y Y Y Y
IResupplyReceivedPDU Y Y Y Y

ResupplyCancelPDU Y Y Y Y
RepairCompletePDU Y Y Y Y

iRepairResponsePDU Y Y Y Y

Collisions CollisionPDU Y Y Y Y
Electromagnetic Emissions

Radar RadiatePDU Y
IEmitterPDU(4) _Y

Communications SINCGARSPDU V
SicjnaIPOU Y Y
Transmt _ erPDU Y Y

ECM EmitterPDU Y Y
Laser LaserPDU Y Y
Infrared EmitterPDU Y
Acoustic Emissions. EmitterPDU Y
EntityControl RequestControlPDU Y
Aggregetion/Deaggregation Aggregate PDU Y
Exercise Management

Initiation Create Entity/Set Data PDUs Y Y
Start Start/Resume PDUs Y Y
Resume Start/Resume PDU Y Y
Ex. Termination Stop/Freeze PDU Y Y
Freeze Stop/Freeze PDU Y Y
Remove Entity Remove PDU Y Y
Regenerate Entity Set Data-Start PDUs Y Y
Observed Event Event PDU Y Y

Parameter. Query Data Query-Data PDUs Y Y
Action Req. Action Request-Response Y Y

PDUs
Message Log Message PDU - V

"Post Exercise Feedback
Replay Exercise Y
Control Replay Speed Y
Control Origin and Magnify Y
Control Groups of Entities Y
Jump To Specified Event or Time Y
Display Timeline Y

Notes: (1) Essentially same information, different parameters.
(2) Includes functions of SIMNET Indirect Fire PDU.
(3) Same Information As Impact PDU plus additional parameters.
(4) Includes Radar functions.

I
11I

1
5.1.1. 8th Workshop

The 8th Workshop on the Interoperability of Defense Simulations was held inI
March of 1993. The status of the various standards documents is summarized in
the Table 2.
Table 2. Status of Standards Documents

DOCUMENT STATUS

DIS Protocol Standard Version 2.0 Second Draft

CASS Version 1.0 Final Draft

ECFR Version 1.0 Final Draft

FDR Version 1.0 First Draft I
Environment Documents Initial Drafts

Field Instrumentation Initial Drafts '

5.1.1.1. IEEE Standards Progress

The results of the IEEE P1278 second ballot were reported at the 8th Workshop.

* 86% of Ballots Returned

* 95% Voted Positive
* 3 Negative Votes

* 11 Positive Votes had Comments

As a result of the second ballot, the Standard for Information Technology,
Prot.: :ols for Distributed Interactive Simulation Applications was accepted as
IEEE .278-1993. I
5.1.2. 7th Workshop

The 7th Workshop on the Interoperability of Defense Simulations was held in I
September of 1992.

5.1.2.1. Discussion of potential changes to DIS Protocol I
5.1.2.1.1. ENTrIY STATE PDU

A recommendation was made to change the definition of the Entity Coordinate
Vector. The current strict interpretation of the DIS standard results in a dynamic I
bounding volume. The reason the bounding volume moves is because
articulated parts can change the shape of the bounding volume. Changing the
shape of the bounding volume serves no useful purpose and adds a I
computational burden to a simulation. The addition of a sentence which states,
"A bounding volume is defined as the cube which includes the entity without
articu. ed parts." will make the entity coordinate system static. (See position I
paper $•-30).

12 II

I
5.1.2.1.2. Collision PDU

Position paper 92-30, "DIS Position Paper on Changes to the Collision PDU", was
presented to the 7th workshop and discussed the current collision PDU's
inability to allow for the conservation of momentum. The recommendation of
the paper was to use four of the bits which are currently padding as follows:

Bit 0 (LSB) and 1 identifies how the simulator generating the collision
computes collisions internally. The following values apply:

0 - Elastic

1 - Inelastic

2 - Other
Bit 2 and 3 (MS98ntifies which simulator should compute the

resulting collision dynamics. The following values apply:

S0 - Don't Care
1 - Sending simulator computes collision dynamics

2 - Receiving simulator computes collision dynamics

3 - Each simulator computes their own collision dynamics

This structure will allow the arbitration of control between two vehicles in a
collision. However to compute the collision the simulators will need additional
data such as the quantity of energy lost and the location of the energy loss.I The ITMC working group did not vote on this recommendation.

5.1.2.1.3. Simulation Management

The 7th workshop reviewed and updated the Strawman Simulation Management
protocol.

Changes discussed during the 7th Workshop. The proposal to allow a change in
the ratio of simulated time to real-time, both slower and faster was discussed. It
was decided that this could be accommodated with the existing Action Request
PDU. The need to define an additional 32-bit field for calendar time was

* discussed. This is necessary for initializing simulation time to Greenwich mean
_ -time. The subgroup decided to note in the standard that the Event PDU is

asynchronous.

The subgroup decided that it needed more information from the network
management subgroup of the Communication Architecture and Security
Subgroup (CASS) on the process and procedure for communicating network
addresses to the simulation manager.

The FECFR requirements for variations in the Stop Freeze PDU were discussed.

Two unique values for the Entity ID were reserved for simulation management.
The Site ID of all ones, means that the PDU is being sent to every entity in the

I
13

I

I
exercise. All ones in the Host ID means that the PDU is being sent to all entities
in the site, and all ones in the Entity ID means that the PDU is being sent to all
entities on the Host. Similarly, all zeros in the Site ID means that no entity within
the exercise is required to process the PDU. The same is true with Host and
Entity.

Another addition to the standard is that management entities will have a unique
ID. That is, an entities ID can't be the same and entity ID of the simulation
manager.

5.1.2.1.4. Emissions

During the 7th workshop the Emissions Subgroup made several
recommendations for the modification of the Emission PDU in Version 2.0.
These are summarized in the Emission Subgroup minutes [UST, 1992b] Volume I
pp. 113-115 and Volume I1p. 110.

5.1.2.1.5. Radio Communications

The Radio Communications Subgroup reviewed the first draft that was included
in Version 2.0. There recommended changes are summarized in the Radio
Communications Subgroup minutes [IST, 1992b] Volume I pp. 117-120 and
Volume II pp. 111-113.

5.1.2.2. Discussion of Potential additions to the DIS Protocol

5.1.2.2.1. Dynamic Terrain PDU /Protocol

The Simulated Environment: Land Subgroup is working on developingI
recommendations for a Dynamic Terrain Protocol to communicate construction
of berms, craters and ditches. The goal is to have an iron-man of the PDU ready
to submit to the communications group by the next workshop.

The wood-man of this PDU is currently under development at IST.

5.1.2.2.2. Environment PDU

One of the further goals of the Simulated Environment: Land Subgroup is to I
formalize requirements for the environment server.

5.1.2.2.3. Newtonian Protocol I
During the ITMC subgroup meeting, an interim report on the Newtonian
Protocol as DIS protocol extension for logistic simulation was presented. This
paper appears in Volume II of the 7th Workshop's Summary Report lIST, 1992b]
p. 145-159. This effort was recognized as having promise not only for logistics I

14 I
I

1
but also for collision resolution and perhaps the Mount/Dismount Infantry
problem.

15.1.2.2.4. Mount/Dismount PDU

At the 7th workshop a paper was submitted by IST to propose a Mount and
Dismount PDU. These PDUs would bring the mounting and dismounting of
infantry clearly within the scope of the DIS protocol. After some discussion, it
was decided that this functionality may be within the scope of the Newtonian
Protocol that is described earlier.

5.1.2.2.5. Concatenated PDU

U The ITMC Subgroup is still considering a Concatenation PDU that could be used
to reduce network traffic problems.

5.1.2.2.6. Aggregate Protocol Extension

The Aggregate Protocol was first discussed at the 6th workshop. The 7th
workshop proposed several changes to this protocol. These changes are
summarized in lIST, 1992b] Volume I p. 112.

5.1.2.2.7. Assume Control Protocol

I The requirement for an Assume Control Protocol was identified during the 7th
workshop. There are various applications for this. First for simulation
application hand-over of mine fields and sonobuoys, or munitions hand-over to
the target entities. Additional uses for this protocol that were discussed include,
handing-over of smoke clouds from tanks or aircraft to an environment server or
simulation, hand-over of burning tanks that would allow maintenance of the
carcass of the tank on the battlefield while the manned simulation was
reconstituted.

5.1.3. Summary of Changes made for the December '92 IEEE Reballot

* Version 1.0 of the standard was balloted in April 1992, see Figure 1. In order to
* become a IEEE standard 75% of all balloters must vote for approval. On the

initial ballots the standard received 72% approval and 384 comments. The DIS
Steering Committee formed a tiger team to respond to the comments and
codified those responses into one single package. Several issues in this package
were submitted to the Interface Time Mission Critical (ITMC) working group for
a vote at the 7th workshop. This package was submitted back to the IEEE
working group which will submit those responses back to the balloters who then
had an opportunity to change there vote in a reballot (Dec. 1992).

II
15

I

1
The following is a summary of the types of comments received after the April
1992 IEEE ballot.

* Change Title 28
• Change Scope 31
* Add Clarification 115
* Correct Error 37
* Editorial 195

Delete Annexes/Appendices 22
* Change Annexes/Appendices 33

The DIS Steering Committee Tiger Team responded to the comments and made
minor adjustments to the standard, see 5.1.3.1. Several substantial changes were
recommended and these changes were referred to the ITMC working group with
a recommendation for approval. These issues are discussed in section 5.1.3.2.

5.1.3.1. Minor changes made for the IEEE reballot

Change Title: Many comments related to the title change that came about
because IEEE changed the title of the standard and many people thought the new
title was inappropriate. The title for the standard for the reballot will be:
Standard for Information Technology - Protocols for Distributed Interactive Simulation I
Applications.

Classifications and Errors: Many of the requests for clarification and editorial
corrections were made to the standard for the reballot.

Annexes/Appendices: Since the Annexes/Appendices will change a lot and the
standard shouldn't have to be updated when something changes in the annexes, I
many of the comments recommended that they not be included in the standard.
The Annexes have been removed from the standard and are currently being
maintained by IST. As a long term solution to the maintenance of the annexes, an I
agreement has been made with Defense Information Systems Agency (DISA) to
take configuration control of the annexes.

5.1.3.2. ITMC working group recommendations.

The ITMC working group made the following decisions at the 7th workshop on
the questions and issues that were referred to it by the steering committee.
* Change BAMs to Radian? The angular representation in the IEEE
standard will be radians. I
• Change the parameters in the Articulated Part Record to be floating point
variables? This passed unanimously.

* Change the representation of time? First, ITMC decided to break the issue
into a decision on whether to reference time from the current hour or time from a
fixed starting point. It was decided that time will be referenced from the current I
hour. Another issue was whether to change the time scale. The least significant
bit of the imne field is currently 1.676 microsecon• Some people felt that another
value was needed for a least significant bit of .,at time field. The options of

16 I
I

m
microseconds and milliseconds were discussed. A vote was taken on whether to
change the time scale from 1.676 microseconds (which rolls over on an hourly
basis) or to microseconds (which rolls over in about a 45 1/2 minute cycle). The

I decision was to stay with the original version and let the clock roll over on the hourly
basis.

0 Put Length of the PDU in the PDU Header? The last issue brought before
Sthe ITMC group was whether to have the length of a PDU in the PDU header.

This would aid in processing concatenated PDUs. The decision of the group was to
use the fourth field of the PDU header (which was padding) to contain the length of the
PDU in four byte words. The question of PDUs that exceed the maximum length
was left for further discussion.

S5.2. 13TH I/ITSEC LESSONS LEARNED

The Distributed Interactive Simulation Interoperability Demonstration at the 13th
I/ITSEC in December 1992 was the fizst large scale implementation of the DIS
protocol.

5.3. ALSP

The purpose of the Aggregate Level Simulation Protocol (ALSP) is to network
existing high level simulations (e.g., wargames) for purposes of education and
training. ALSP is being developed similarly to SIMNET in that there is no central
node and changes in public attributes and external events are broadcast on the
network. ALSP operates at a generally higher level of aggregation than DIS. It is
possible that eventually the DIS protocols will grow to accommodate ALSP and
vice versa. The ADST Architecture and Standards effort will continue to monitor
ALSP for developments in this area.

5.4. J-MASS

The Joint Modeling and Simulation System (J-MASS) program has an initial
charter to-develop a highly detailed non real-time emulation of the SA-12 system
operating in an electronic warfare and natural environment as well as to provide

m modeling and simulation libraries and data dictionaries to support this effort. J-
MASS operates at a generally much higher level of detail than does DIS. It is
possible that eventually the DIS protocols will grow to accommodate J-MASS,
however, or share some commonality in the database or PDU approach. The
ADST Architecture and Standards effort will continue to monitor J-MASS for
developments in this area.

I
I
I

17

I

APPENDIX A:
PROTOCOL EXTENSION TEMPLATE

Appendix A defines a template for documenting protocol extensions.

I
I
I
I
I
I
I
I
I
I
I

Appendix A Protocol Extension Template

1. [PROTOCOL EXTENSION]

This section will briefly describe the application protocol extension. A protocol
extension may be new sub-protocol, a group of PDUs and instructions that augments
and existing protocol/sub-protocol, a single PDU and instructions, or updates and
changes to an existing protocol/sub-protocol. If the protocol extension is for new
sub-protocol or a group of PDUs the information in sections 1 and 2 may be more
extensive.

1.1. BASE STANDARD

This section shall summarize what standard this protocol extension is building on
i.e. IEEE 1278-1993, SIMNET 6.6.1, DIS 2.0 (March 1993). This paragraph shall
include, by reference, any other protocol extensions that are assumed. Version
information, when available, should be included. Reference standards should be
included in the applicable documents section 1.2.

This section will highlight any impact that this protocol extension has on the base
standard. Any information that should be added/changed in the base protocol
should be discussed. Major dependencies with the base standard should also be
noted.

This section will also address whether this protocol extension should be integrated
into the Base Standard. Test specific extensions may not be integrated into the base
standard. Compatibility and integration issues with other DIS standards efforts
should be addressed, i. e. Communication Architecture for Distributed Interactive
Simulation (CADIS).

1.2. APPLICABLE DOCUMENTS.

The following documents are referenced in this protocol extension:

1.3. IMPLEMENTATION HISTORY.

This section will summarize the environmtnts in which this protocol extension
has been implemented.

2. GENERAL REQUIREMENTS

The material for in this section should be suitable for insertion in Section 4
"General Requirements" of the DIS protocol standard [IEEE 1993]. If this is a
SIMNET protocol extension, the information should still be in this format.

2.1. INTRODUCTION

This section contains requirements concerning the content and use of this protocol
extension in exercises.

A-1

Appendix A Protocol Extension Template

2.1.1. Terminology

Define any new terms added by this protocol extension. i
2.1.2. Key Concepts

Describe any new key concepts added by this protocol extension.

2.1.3. Information common to all PDUs in this extension. (optional)

2.1.4. General information on Protocol Extension (optional)

2.2. PDUs FOR [PROTOCOL EXTENSION] i
The following paragraphs shall establish the content and the procedure for use of
the PDU(s) in this protocol extension

2.2.x. IPDU ,iamel for each PDU in extension

This paragraph shall summarize the purpose of the PDU. For example "'The Fire I
PDU shall be used to communicate information associated with the firing of a
weapon."

2.2.x.1. Information Contained in the PDU (required)

This paragraph will summarize the type of information contained in the PDUi

2.2.x.2. Issuance of the [PDU Name] (required)

Thi. paragraph defines the conditions under which the PDU should be issued. This
pa- graph defines the requirements placed upon the issuer of the PDU by the i
prc ocol extension. For example "The Fire PDU shall be issued by an entity at the
moment it fires a weapon."

This paragraph should also define the quality of communication service that is
required by this PDU. For example 'T'he Detonation PDU shall be issued using a
real-time, best effort, multicast communication service."

2.2.x.3. Receipt of the [PDU Name] (required)

This paragraph defined the how the PDU shall be interpreted upon receipt. This i
paragraph defines the requirements placed upon the receiver of the PDU by the
protocol extension.

2.2.x.4. Special information related to [PDU Name] (optional)

This optional paragraph may be used to clarify the interpretation of the PDU or
special conditions that may need additional explanation.

2.2.x.5. Examples of extension (optional)

This optional paragraph will provide examples of how this PDU is used.

II
A-2 I

IAppendix A Protocol Extension Template

2.2.2. Examples of protocol extension

This optional paragraph will provide examples of how this protocol extension isI used. This paragraph should include examples of where multiple PDUs are used in
concert to perform composite functions. The paragraph may have a subparagraph
for each composite function that is explained. For example, see Figure 1.

4.4.6.5.1.3 Entity Creation. In the case that
necessary entity data and initialization data have already been
established off-line and prior to the exercise, it is possible
to create a new entity by assigning a particular entity ID. To
create a new entity, the Simulation Manager, SM, shall issue a
Create Entity PDU to the simulation application that will be
controlling the simulation entity. The receiving simulation
application shall respond with an Acknowledge PDU.

The process of entity creation is illustrated in FigureI 4-5.3. SM
Entity

UDI E Create Entity

IPDU

Figure 5-4.3 Entity Creation

Figure I.. Protocol Example.

i 3. DETAILED REQUIREMENTS

The material for in this section should be suitable for insertion in Section 5
"Detailed Requirements" of the DIS protocol standard. If this is a SIMNET protocol
extension, the information should still be in this format.

I 3.1. INTRODUCTION

This section defines the PDUs and their fields.

3.2. REPRESENTATION OF DATA

This paragraph will note any variation with the base standard's representation of
data.

I
A-3

I

Appendix A Protocol Extension Template

3.3. BASIC DATA TYPES AND RECORDS

This paragraph will define any basic data items or records that are added/changed by
this protocol extension. Data items and records should be included in this section if
there are multiple references to them or they are useful outside of this protocol
extension.

3.4. LIST OF PDUs IN PROTOCOL EXTENSION

This paragraph will list the PDUs that comprise this protocol extension.

3.5. PROTOCOL DATA UNITS FOR PROTOCOL EXTENSIONS

3.5.x. PDU information (for each in protocol extension)

This paragraph shall briefly summarize the PDU and then give a detailed i
description on each of the fields in the PDU. For example see Figure 2.

The firing of a weapon shall be communicated by issuing a I
Fire PDU. The Fire PDU shall contain the following fields:

(1) PDU Header - These fields shall identify
the protocol version number, the exercise
identifier, the protocol data unit type and the
length of the PDU. The PDU Header shall be
represented by the PDU Header Record (see
5.3.15).

(2) Firing Entity Identification - This field
shall identify the firing entity. This field U
shall be represen-ed by an Entity Identifier
Record (see 5.3.8).

(10) Range - This field shall specify the range that
an entity's fire control system has assumed in
computing the fire control solution. This field
shall be r-.:resented by a 32-bit floating point
number in eters. For systems where range is
unknown or unavailable, this field shall contain
a value of zero. I

Figure 2. Example PDU Description.

I
I
I

A-4

I

Appendix A Protocol Extension Template

This paragraph shall also represent the PDU as a figure. For example "The Repair
Complete PDU is represented in Figure 3.

(bilts) REPAIR COMPLETE PDU FIELDS

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID -8 bit unsigned integer

Rer Ne HEADER PDU Type-S bit enumeration
Record NameLength - 8 bituigned integer

or R Site - 16 bit unsigned integer -Field Name and Length
Field Name Host - 16 bit unsigned integer or4o ENTITY ID Entity - 16 bit unsigned integer Field LengthREPAIRING Site - 16 bit unsigned integer Fil Length

Host - 16 bit unsigned integer
Entity- 16 bit unsigned integer

16 REPAIR 16 bit enumeration
16 PADDING 16 bit unused

Figure 3. Example PDU Diagram.

I 4. ENUMERATED AND BIT ENCODED VALUES FOR USE WITH
(PROTOCOL EXTENSION)

I The material for in this section should be suitable for insertion in the "Enumerated
and Bit Encoded Values for Use with Protocols for Distributed Interactive
Simulation Applications" document that accompanies the base standard (see section
1.1). If this is a SIMNET protocol extension, the information should still be in this
format.

I 4.1. UPDATED FIELDS

For each enumerated or bit encoded field that is changed by this protocol extension
the following information will be provided.

* field name and description

S* field value and meaning

* impact on other simulation application

I .- 4.2. NEW FIELDS

New fields will provide the following information in addition to the information
for updated fields.,

• Scope

S* Applicable Documents

I
I

A-5I

I
I
I

APPENDIX B:
I DIS PROTOCOL EXTENSIONS

Component Protocol Extensions

BI C31 Protocol Extension

B2 Digital Message Communications Protocol Extension

I
I

I
i
I
I
I
I
I
I
I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

IAppendix BI C31 Protocol Extension

TABLE OF CONTENTS

1. C31 Protocol Extension .. 1

1.1. Base Standard ...

1.2. Applicable documents ... 1

2. General Requirements .. I

2.1. Introduction .. 1

2.1.1. Terminology .. 1

I 2.1.2. Key Concepts .. 1

2.1.3. General information on C31 protocol i

2.1.4. Information common to all PDUs in C3I protocol 2

2.2. PDUs for C31 Protocol Extension for CGF 2

2.2.1. Incident/Situation PDU ... 2

2.2.2. Correlation PDU .. 3

2.2.3. Perception Control PDU ... 3

2.2.4. Entity Communication PDU .. 4

2.2.5. Task Organization PDU .. 5

2.2.6. (Re)Start PDU ... 7

2.2.7. Admin Request PDU 8

2.2.8. Impending Admin Action PDU ... 9

2.2.9. General Purpose Request PDU ... 10

2.2.10. Perceived Status PDU .. 10

2.2.11. Entity Locations PDU .. 10

2.2.12. Point Control Measures PDU .. 11

2.2.13. Point Control Measures with Relations PDU 12

I2.2.14. Non-Point Control Measures PDU 13

2.2.15. Ctrl Measures for Commo PDU ... 15

I 2.3. Examples of C3I Protocol Extension for CGF 15

3. Detailed Requirements ... 30

3.1. Introduction ... 31

3.2. Representation of Data ... 31

3.2.1. Enumerated Radix 10 .. 31

3.3. Basic Data Types and Records .. 31

3.3.1. Correlation Identifier Record ... 31

3.4. Protocol Data Units for Protocol Extensions 32

Bl-i Version 1.0

I

Appendix BI C3I Protocol Extension

3.4.1. Basic Data Types and Records .. .32

3.4.2. List of PDUs in Protocol Extension 32

3.4.3. Incident PDU ... 33

3.4.4. Correlation PDU .. 34

3.4.5. Perception Control PDU .. 35

3.4.6. Entity Communication PDU .. 36

3.4.7. Task Organization ... 37

3.4.8. (Re)Start PDU ... 39

3.4.9. Admin Request PDU .. 40
3.4.10. Impending Admin Action PDU ... 40

3.4.11. General Purpose Request PDU ... 41
3.4.12. Perceived Status PDU .. 42

3.4.13. Entity Locations PDU .. 43
3.4.14. Non-Point Control Measures PDU 45

3.4.15. Point Control Measures PDU 46

3.4.16. Point Control Measures with Relations PDU 47
3.4.17. Ctrl Measures for Commo PDU ... 48 I

4. Enumerated and Bit Encoded Values for Use with (Protocol
Extension) .. 49

4.1. Updated Fields .. 49

4.1.1. PDU Kind .. 49
4.1.2. Entity types .. 5

4.2. New Fields .. J 52

4.2.1. Fidelity ... 52

4.2.2. When Flag .. .52
4.2.3. Perception Code .. 52
4.2.4. Action Requested .. 52

4.2.5. Impending Action ... 53 I
4.2.6. Shape Flag .. 53

I

I

IAppendix B1 C31 Protocol Extension

I1. C31 PROTOCOL EXTENSION

The C31 Protocol Extension has been developed to enable cognitive information to
communicated in the DIS environment.

1.1. BASE STANDARD

This is a protocol extension to the DIS 2.0 Standard [IST 1993a].

1.2. APPLICABLE DOCUMENTS.

IEEE, 1993 1278-1993, Standard for Information Technology, Protocols for
Distributed Interactive Simulation Applications, IEEE, New
York, NY, March 1993

IST, 1993a Proposed IEEE Standard Draft: Standard for Information
Technology - Protocols for Distributed Interactive Simulation
Applications, Version 2.0 - Second Draft, IST-CR-93-01, UCF
Institute for Simulation and Training, 22 March 1993.IIST, 1993b Enumeration and Bit Encoded Values for Use with Protocols for
Distributed Interactive Simulation Applications, Version 2.0 -
Second Draft, IST-CR-93-02, UCF Institute for Simulation and
Training, 22 March 1993.

I 2. GENERAL REQUIREMENTS

I TBS

2.1. INTRODUCTION

I TBS

2.1.1. Terminology

I TBS

2.1.2. Key Concepts

TBS

2.1.3. General information on C31 protocol

SPDUs FOR INITIALIZATION:
Correlation
Perception Control
Non-Point Control Measures
Point Control Measures
Point Control Measure with Relations

PDUs FOR COMMUNICATIONS:

SB1-1 Version 1.0

I

Appendix BI C31 Protocol Extnsion

Entity Communication
Ctrl Measures for Commo,
Entity Locations
Task Organization
General Purpose Request
Perceived Status
Perceived Tactics
Incident / Situation

PDUs FOR SIMULATION CONTROL:
(Re)Start
Admin Request
Impending Admin Action

2.1.4. Information common to all PDUs in C31 protocol

2.2. PDUS FOR C31 PROTOCOL EXTENSION FOR CGF

The following paragraphs shall establish the content and the procedure for use of
the PDU(s) in this protocol extension

2.2.1. Incident/Situation PDU

PDU for announcing that in incident has occurred

2.2.1.1. Information Contained in the Incident PDU

See the detailed description of this PDU in section 3.4.

2.2.1.2. Issuance of the Incident PDU 3
This PDU will be issued anytime an incident has occurred.

2.2.1.3. Receipt of the Incident PDU

Receiving entities may take application specific action upon receipt of Incident
PDUs.

2.2.2. Correlation PDU

This format is used to relate a code to a character string and to define any supporting
information. Examples of uses are to relate a code with a contingency plan and
define parameters to the contingency plan; or to relate a code with a situation. This
is an update to the previously defined Correlation PDU. I
In cases where supporting information is defined for a Correlation Code, a separate
PDU is formed for the initial correlation (with 0 for SupportinglnfoOrder), and
formed for each piece of supporting information (with a positive integer is assigned
to the SupportinglnfoOrder to define the order of supporting information). Each
PDU defined for supporting correlation information will have the same Correlation
Site, Host and Code as the correlation being supported.

2.2.2.1. Information Contained in the Correlation PDU

See the detailed description of this PDU in section 3.4.

BI-2 Version 1.0 I
I

Appendix Bi C3M Protocol Extension

I2.2.L2. Issuance of the Correlation PDU

This PDU is typically issued at the start of an exercise.

2.2.2.3. Receipt of the Correlation PDU
Upon receipt a table should be constructed to related correlation codes received in
PDUs to the corresponding character strings.

I2.2.2.4. Special information related to Correlation PDU

For the June demonstration, the SupportinglnfoOrder will always be 0. The effect of
this is that only correlation codes will be defined, not supporting info.

2.2.3. Perception Control PDU

I This PDU will be used to control perception reports for entities.
2.2.3.1. Information Contained in the Perception Control PDU

I See the detailed description of this PDU in section 3.4.
2.2.3.2. Issuance of the Perception Control PDU

TBS
2.2.3.3. Receipt of the Perception Control PDU

I TBS

2.2.3.4. Special information related to (Re)Start PDU

For the June Demo:
For each perception belonging to an entity, an Entity State PDU will be sent instead
of the Entity Location PDU. Since we will use dedicated ports for monitor and
control, there will be no confusion about the perception owner. In addition, the
following conventions will be used:

* use zeros for unknown values.

* no shapes
* add bit flag to say dropped (in EntityAppearance, same one used for

ATACMS/MLRS in JayHawk Thunder)

S for smoke cloud, use Entity Type Record value 41001000I Entity Site and Host will be meaningless. Entity ID will really be the Track
Number for the aggregated perception.

* EntityMarking will contain the first eleven characters of the organization
name.

2.2.3.5. Example of the Perception Control PDU

A Perception Control PDU will be used to request perceptions for an entity.
Perceptions for an entity will be started with an Entity Communication PDU to
associate an ID with the perception report. Each perception will then be reported
with a Entity Location PDU.

I
B1-3 Version 1.0I

Appendix B1 C31 Protocol Extension I
2.2.4. Entity Communication PDU

This PDU will be used to describe communication between entities. Examples of i
uses are Perceptions, OPORD, FRAGO, Warning Order, SITREP, OPREP, etc.

The Communication information defined in this PDU will be used to relate
information reported in subsequent PDUs to information reported here.

The Related Commo Site, Host and ID can be used to relate a FRAGO to the OPORD
which it is modifying. If a relation to a previous Communication is not necessary,
these fields will contain zeros.

The Correlation Site, Host, and Code can be used to identify the type of
communication which this PDU is announcing. These fields are set up (typically) at
initialization by the CGF.

2.2.4.1. Information Contained in the Entity Communication PDU

See the detailed description of this PDU in section 3.4.

2.2.4.2. Issuance of the Entity Communication PDU

TBS

2.2.4.3. Receipt of the Entity Communication PDU i

TBS

2.2.5. Task Organization PDU i
This PDU will be used to describe the subordinates of a single entity. It can also
define the order of succession.

2.2.5.1. Information Contained in the Task Organization PDU

The Communication information will be the same on any task organization to be i
used for one OPORD, one FRAGO, or one Warning Order. For initialization
purposes, Commo information may be 0. The CommoPartID is used to distinguish
between PDUs for this Communication.

The Entity identification is used to identify the unit whose subordinate units are
listed.

A simple method of succession of the subordinates is accomplished by the order in
which the subordinate units are reported in the PDU. A more complicated
succession may be defined in the tactics and contingency plans of the Model Input
for the Entity. If an additional method of succession is to be defined, an Association
PDU may be used (using the CommoPartID) to attach a succession plan to the Entity.
This allows definition of a more specific set of rules for determining when
succession should occur and how. The succession plan is identified in the
Correlation PDU at initialization.

The time stamp represents an effective time for the task organization. (The current
time stamp is insufficient for future and past since it only can show 1 hour's worth
of time. Because of this drawback, we will now be using a 64 bit time stamp which

B1-4 Version 1.0 I

I Appendix B1 C31 Protocol Extension

reflects Game Time in all PDUs. A new PDU will be designed to transmit the

starting game time as part of initialization.)

The Subordinate Entities are defined as a variable list at the end of the PDU. The

I number of entries in the list can be found in NumSubordinates.

Command chains are at a player level not at a platform level, therefore the track
number reported is the Monitor Unit's aggregation of the platforms into a player.
This equates to calling the SL, S2, S3, S4 and S5 a company headquarters. To the CGF
Engine, the company HQ is a player with a platform for each of the HQ elements. It

I does not make sense to report the HQ elements in the command chain, but it does
make sense to report the company HQ.

The OrgName and Type Code for a unit will be reported in the Notion or Perception
I PDU(s) for that unit. Any unit in a player's Task Org/Command Chain is also on his

perception list.

I See the detailed description of this PDU in section 3.4.

2.2.5.2. Issuance of the Task Organization

I TBS

2.2.5.3. Receipt of the Task Organization

TBS

2.2.5.4. Examples of the Task Organization PDU

OPORD/FragO Examples

Since a FragO is a subset of an OPORD, the example given applies equally to both.

Entering the Order through the UI:

I Correlation PDUs set up any menu options for tactics, types of things, contingency
plans, etc. The Correlation PDUs are typically sent at the start of a simulation, but
not necessarily.

Sending the Order to the CGF:

To report an OPORD or FRAGO, send an Entity Communication PDU which sets up
the identifying numbers for the communication as well as the sender and
recipient(s). The identifying numbers are used in subsequent PDUs to identify
information belonging to the communication.

S- For each part of the OPORD, a short description of the PDUs expected to transmit the
information will be given.

I OPORD/FRAGO # - The Commo Site, Host, and ID distinctly identify this order.
The U.I. can have a mapping of that unique ID to some user entered ID if desired.

Reference - No map reference is needed, the map(s) being used are set up in the
input files and should be the same across CGF and U.I. A reference can be made to a
previous communication through the RelatedCommo Site, Host, and ID of the

IEntity Communication PDU.

B1-5 Version 1.0I

Appendix BI C31 Protocol Extension

Time Zone for Order - This value should never be needed as the times entered by
the user should always be converted to Game Time when entered in the PDUs.

Task Organization - Task Organization changes should be reported via multiple
Task Organization PDUs.

Situation - All information contained in the friendly or enemy situation can be
conveyed through multiple Ctrl Measure PDUs. (It is our contention that anything
about the current situation can be graphically displayed, and therefore can be
reported as Ctrl Measures.) Assumptions are not needed for the CGF. Attachments
and Detachments can be reported similarly to Task Organization.

Mission - and 1
Execution - Most of the mission and execution can be shown as control measures
graphically and can therefore be reported via multiple Ctrl Measure PDUs.
Information about time to reach objectives can also be reported with the objective
reported in the Ctrl Measure PDU. Information like "Don't get decisively engaged"
or "Withdraw upon contact" can be reported as contingency plans attached to a unit. 1
Service Support - The information reported in Service Support can be reported in
the Task Organization or as Friendly Situation.

Command and Signal - Most command and signal information can be reported as
Friendly Situation. Occasionally, a contingency plan may need to be attached to a
unit or units to force a certain type of behavior (listening silence, complex I
succession of command, etc.). Simple succession of command may be reported in
the same PDUs as the Task Org..:-ization.

When all PDUs for a communication have been sent, send an Entity 1
Communication Termination PDU to let the CGF know that it has received the
complete set of PDUs for the communication. This PDU summarizes the number of
PDUs of each type sent for this communication.

2.2.6. (Re)Start PDU

This PDU will be issued just prior to starting the simulation or restarting the
simulation (after being paused). The ScenarioTimeUnits field is used to specify the
units of measure for the time reported as ScenarioTime. For most uses, the time I
units will be according to the Gregorian Calendar.

TimeCoordinate X, Y, and Z define the point on the earth from which all Scenario
times are valid. This prevents a problem with time zones, in fact, the time should
not even be time zonal, but sidereal.

The GameStartTime is typically 0 at simulation start, but can be any number. The
game time is used to communicate times throughout the execution of the
simulation. i
CountToStart is reports the delta amount of time from receipt of this message until
the simulation resumes/starts execution. (There is always a difference between the
time ich asset will have - that is transmission time. No fix is proposed for this.)

B-6 Version 1.0

I

Appendix BI C31 Protocol Extension

The RealTimeMult is the fraction of wall clock time at which the simulation will
proceed.

2.2.6.1. Information Contained in the (Re)Start PDU

See the detailed description of this PDU in section 3.4.

2.2.6.2. Issuance of the (Re)Start PDU

This PDU will be issued just prior to starting the simulation or restarting the
simulation (after being paused).

2.2.6.3. Receipt of the (Re)Start PDU

TBS

I 2.2.6.4. Special information related to (Re)Start PDU

For the June Demo:

ScenarioTimeUnits will be 1.
ScenarioStartTime will contain the number of seconds since midnight

(GMT), January 1, 1970.

I TimeCoordinate X, Y, and Z will reflect a point in the scenario playbox.

GameStartTime will begin at 0, for subsequent Admin requests, will reflect
I current game time.

CountToStart is typically 5 seconds.

SRealTimeMult will typically be 1.0, but can be changed via Admin Requests.

2.2.7. Admin Request PD U

This PDU will be sent to the Master Controller (CGF Engine) whenever changes to
the execution parameters of the simulation are desired.

2.2.7.1. Information Contained in the Admin Request PDU

The ActionRequested field specifies the administrative action to be taken. Option 1
will cause a pause in the simulation, Option 2 will cause the real time multiple to be
modified. Option 3 will cause the simulation to resume operation after being frozen.
Option 4 combines options 2 and 3, allowing a resume of operations with a changed
real time multiple.

I The EffectiveGameTime is the requested effective time of the administrative
change.

CountToStart is the number of wall clock seconds until the change should take
effect.

EffectiveGameTime and/or CountToStart can contain -1 to signify as soon as
possible. For Option 1 or Option 2, EffectiveGameTime is the time at which the
request should take effect; CountToStart could be used instead. If

I EffectiveGameTime is used for Option 1 or Option 2, CountToStart is ignored.

I B1-7 Version 1.0

I

Appendix BI C31 Protocol Extension

For Option 3 or Option 4, EffectiveGameTime specifies the game time to start at (this
could cause a jump in the game). A value of -1 causes the game to resume at the
point where it was paused. Regardless of the EffectiveGameTime, CountToStart
gives a delta time to restart the game. A value of -1 for CountToStart means restart
when ready.

The RealTimeMult is the fraction of wall clock time at which the simulation will
proceed. If option 2 or 4 are chosen, this value will modify the real time multiple for

the simulation.
See the detailed description of this PDU in section 3.4.

2.2.7.2. Issuance of the Admin Request PDU

TBS
2.2.7.3. Receipt of the Admin Request PDU

TBS

2.2.7.4. Special information related to Admin Request PDU

For the June Demo:

All options will be available. This capability should be restricted to a controller
station (Ground Truth?).

Use -1 for EffectiveGameTime and CountToStart for any requests to keep things
simple.

2.2.8. Impending Admin Action PDU

This PDU will be issued by the Master Contr -lUer (CGF Engine) whenever changes to
the execution parameters of the simulation are going into effect.

The ActionRequested field specifies the impending administrative action. Option I
will cause a pause in the simulation, Option 2 will cause the real time multiple to be
modified.

The EffectiveGameTime is the effective time of the administrative change. If option
2 is chosen, this value represents the new real time multiple for the simulation.
2.2.8.1. Information Contained in the Impending Admin Action PDU I
See the detailed description of this PDU in section 3.4.
2.2.8.2. Issuance of the Impending Admin Action PDU I
TBS

2.2.8.3. Receipt of the Impending Admin Action PDU n

TBS

2.2.9. General Purpose Request PDU I
This PDU wi.' replace the Service Request PDU since the ServiceRequest is limited
to resupply aria repair, and time and place for delivery/link up is not specifiable.

B1-8 Version 1.0

I

I Appendix BI C31 Protocol Extension

2.2.9.1. Information Contained in the General Purpose Request PDU

See the detailed description of this PDU in section 3.4.
2.2.9.2. Issuance of the General Purpose Request PDU

TBS

2.2.9.3. Receipt of the General Purpose Request PDU

I TBS

2.2.9.4. Special information related to General Purpose Request PDU

For the June Demo:

All options will be possible.

I 2.2.10. Perceived Status PDU

2.2.10.1. Information Contained in the Perceived Status PDU

See the detailed description of this PDU in section 3.4.
2.2.10.2. Issuance of the Perceived Status PDU

TBS

2.2.10.3. Receipt of the Perceived Status PDU

I TBS

2.2.11. Entity Locations PDU

This PDU will be used to describe entity locations, etc.
2.2.11.1. Information Contained in the Entity Locations PDU

The PercepFlag is used to define general characteristics of the Perception.
The Entity identification is used to identify a unit whose location is reported
(proposed or actual, perceived or real location); to identify a unit who is associated
with a control measure (i.e., Security Operations).

EntityAppearance contains the perceived appearance of a unit.

EntityType distinguishes among units.
* Correlation Site, Host, and Code are valid only if PercepFlag C is 1 (i.e. org name is

known).

The location of the perception is specified.

The time stamp represents an effective time for the control.

See the detailed description of this PDU in section 3.4.
I 2.2.11.2. Issuance of the Entity Locations PDU

TBS

1
U BI-9 Version 1.0

I

Appendix BI C3I Protocol Extension

2.2.1L3. Receipt of the Entity Locations PDU

TBS

2.2.11.4. Special information related to Entity Locations PDU

For the June Demo:

Subsequent points for lines or areas will be absolute (DataFlag B will equal 1).

2.2,12, Point Control Measures PDUL

This PDU will be used to describe single point control measures.

A number of point control measures may be defined in one Point Control Measures
PDU. The NumCtrlMeasures identifies the number of separate control measures
reported. Any control measure that is defined only by a point will be reported in this
PDU.
2.2.12.1. Information Contained in the Point Control Measures PDU

The CtrlMeas Site, Host, and ID are global ids which are used outside the scope of
any single Entity Communication.

A tactic may be associated with the control measure through the Correlation Site,
Host, and ID.

EntityType distinguishes among control measures.

The location or origin of the Control Measure is specifie,.

The time stamp represents an effective time for the control.

See the detailed description of this PDU in section 3.4. 1
2.2.12.2. Issuance of the Point Control Measures PDU

TBS I
2.2.12.3. Receipt of the Point Control Measures PDU

TBS I
2.2.12.4. Special information related to Point Control Measures PDU

For the June Demo:
This PDU will be used to define simplk control measures.

Contact Point - Point Control Measure with Relations PDU will be used.

Control/Coordination Point - same as for Contact Point

Passage Point - Point Control Measure PDU will be used. The Correlation Site, Host
and Code are used to define a tactic associated with the passage point. The Passage
Point may also be defined as a line, area or volume, in which case the Non-Point
Control Measure PDU must be used. I
Release Point - Location may be explicitly defined in a Point Control Measure PDU
or may be defined as par't of the route which it delineates. If it is defined explicitly, a
Point Control Measure with Relations PDU must correlate it with the route.

B1-10 Version 1.0 I
I

S Appendix BI C31 Protocol Extension

Start Point - same as for Release Point.

Target Location - Location is defined in the Entity Location PDU. The time stamp is
used to differentiate between past, present, and future locations.

S Reference Point - Location is defined in the Point Ctrl Measures PDU. Altitude may
be used.
Unit Location - same as for Target Location.

2.2.13. Point Control Measures with Relation& PDU

This PDU will be used to describe a point control measure and to relate it to other
previously defined control measures. (This can be used to define a Coordination
Point location and relate it to the Phase Line and Lateral Boundary which cross at

* the point.)
One point control measure may be defined in one Point Control Measure with
Relations PDU. In addition, multiple previously defined control measures may berelated to the point control measure defined. The CtrlMeas Site, Host, and ID areglobal ids which are used outside the scope of any single Entity Communication.

A tactic may be associated with the control measure through the Correlation Site,
Host, and ID.
2.2.13.1. Information Contained in the Point Control Measures with Relations
PDU

EntityType distinguishes among control measures.I The location or origin of the Control Measure is specified.
The time stamp represents an effective time for the control.I See the detailed description of this PDU in section 3.4.
2.2.13.2. Issuance of the Point Control Measures with Relations PDU

I TBS

2.2.13.3. Receipt of the Point Control Measures with Relations PDU

I TBS
2.2.13.4. Special information related to Point Control Measures with Relations
PDU

For the June Demo:

This PDU will be used to define simple control measures.

2.2.14. Non-Point Control Measures PDU

This PDU will be used to describe control measures consisting of multiple points.
One non-point control measure may be defined in one Non-Point Control Measures
PDU. The CtrlMeas Site, Host, and ID are global ids which are used outside the scope
of any single Entity Communication.

SBI-11 Version 1.0

I

Appendix B1 C3I Protocol Extension

2.2.14.1. Information Contained in the Non-Point Control Measures PDU

A tactic may be associated with the control measure through the Correlation Site,
Host, and ID.

EntityType distinguishes among control measures.

The location or origin of the Control Measure is specified.

The time stamp represents an effective time for the control. 1
The additional points needed to represent a line or area are given in the repeating
field.

See the detailed description of this PDU in section 3.4. 1
2.2.14.2. Issuance of the Non-Point Control Measures PDU

TBS I
2.2.14.3. Receipt of the Non-Point Control Measures PDU

TBS 1
2.2.14.4. Special information related to Non-Point Control Measures PDU

For the June Demo: 1
This PDU will be used to define simple control measures.

Line Control Measures 3
Phase Line (PL) - Line is defined as a list of points in the Non-Point Ctrl

Measure PDU. The Time stamp may be used to correlate multiple unit's
arrival at the Phase Line. The Correlation Code may be used to force a
certain set of actions related to the line.

Lateral Boundary - Line is defined in the Non-Point Ctrl Measure PDU as a
list of points. Altitude may be used. It is not likely that the Time stamp, or
Correlation Code are used.

Rear Boundary - same as for Lateral Boundary.

Fire Support Coordination Line (FSCL) - same as for Lateral Boundary, except
that the Correlation Code is used to identify the tactic associated with the 1
measure, and time stamp is probably used to identify when the measure
goes into effect.

Line Of Attack (LOA) - same as for FSCL

Line of Departure (LD) - same as for FSCL

Line of Contact (LC) - same as for FSCL
Line of Departure is Line of Contact (LD/LC) - same as for FSCL

Sector - The Unit with Related Ctrl Measures PDU is used to identify the unit 1
and relate the control measures defining its sector of operations with it.

Security Operations - Same as for Sector, except Correlation Code is used to
identify which type of security operations is to be used. I

B1-12 Version 1.0

I

I Appendix BI C3I Protocol Extension

Area Control Measures

Assembly Area - Area is defined in the Non-Point Ctrl Measure PDU. A tactic
may be attached to this area through the Correlation Code. A time stamp is
likely to be used. A Unit with Related Ctrl Measures PDU should be used
to relate entities to the Assembly Area.

Objective - same as for Assembly Area.

No Fire Area - same as for Assembly Area, except a tactic of No-Fire should be
defined in the Correlation Code.

Obstacles - Area is defined in the Non-Point Ctrl Measure PDU. A Time
stamp may be used. The Entity Type Record should identify the type of
obstacle. A Unit with Related Ctrl Measures PDU could relate entities with
the obstacle.

2.2,15. Ctrl Measures for Comnno PDU

This format is used define which previously defined control measures should be
used with this communication.

I 2.2.15.1. Information Contained in the Control Measures for Commo PDU

See the detailed description of this PDU in section 3.4.

I 2.2.15.2. Issuance of the Control Measures for Commo PDU

TBS

I 2.2.15.3; Receipt of the Control Measures for Commo PDU

TBS

2.3. EXAMPLES OF C.3 PROTOCOL EXTENSION FOR CGF

Instructions for SITREP creation:

I The PDUs expected in a SITREP are listed below. For each, the fields of the PDU are
defined with reference to SITREPs.

Information for "Defensive Measures" (line 6) will not be supplied by the CGF
Engine. It can be left in the format for probable future use, or discarded.

I Only Tactics are available for "Summary of Unit Activity" (line 3), and "Enemy
Activity/Intentions" (line 7) for the June Demo.

The information received in the Perceived Status PDUs can be used to formulate a
FLOT if you want to come up with an algorithm; calculate which units would be
considered on the Forward Line (based on Loss and Gain Rates); plot the lines, etc.
Our feeling is that there are too many methods of determining the FLOT, and thatIhaving it in the SITREP doesn't really gain that much for the viewer...

I Entity Commo PDU

Commo Site, Host, and ID - unique to this report

I
B1-13 Version 1.0

I

Appendix BI C31 Protocol Extension

RelatedCommo Site, Host, and ID - probably O's since SITREPs aren't usually
correlated with previous reports.

CommoPartID - incremented irom last CommoPartID

fromEntitySite, Host, ID, and TrackNum - contains id for "Unit submitting
report" (line 1) with respect to Monitor Unit

CorrelationSite, Host, and Code - contains code for SITREP

TimeOfReport - contains "DTG of Report" (line2)

NumPDUs - contains number of PDUs to be sent for this report

NumRecipients - probably only sent to I (superior) U
repeat {

toEntitySite, Host, ID, and TrackNum - corresponds to superior unit. I
) for each recipient

Perceived Tactics PDU

CommoSite, Host, and ID - set up in Entity Cotmoo PDU

CommoPartID - incremented from last CommoPartID

EntitySite, Host, ID, and TrackNum - contains identification for "Unit
submitting report" (line 1) with respect to Monitor Unit

Fidelity - contains 1 for self

NumTactics - contains number of tactics unit submitting report is operating
under plus number of tactics unit is intending to use

repeat {
EffectiveTbi-le - contains "DTG of Report" (line 2) or time when tactic is I

intended to be operational.

CorrelationSite, Host, and Code - identifies a tactic which this unit is
operating under or which this unit is intending to follow (distinguishable
by Effective Time field). Feeds "Summary of Unit Activity" (line 3) or
'Tactical Intentions" (line 8). The tactics would be displayed as: "Tactics I
for unit z <DTG>: <tactic string>, <tactic string>, ..., <tactic string>.

} for each tactic

Entity Locations PDU

One Entity Locations PDU will list all subordinates by identification and center of
mass.

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

NumEntities - contains number of entities to be reported in this PDU

repeat(

EntitySite, Host, and ID - contains identification for the Monitor Unit.

B1-14 Version 1.0 I

Appendix BI C31 Protocol Extension

TrackNum - the number local to the MonitorUnit which is used to represent
the entity being reported. This value may be used to distinguish among
aggregations of the same entity type (if Flag C, below, is 0). When this
number is needed, it is used with entity type for "Unit" (line 4: Location).

PercepFlags - A contains 0 for N/A

B contains 2 for cooperative data

C probably contains I for OrgName known

D..I contain 0 for N/A

EntityAppearance - probably all Os, possibly dead is set

EntityOrgCode Site, Host, and Code - contains semantic code corresponding to
org name if Flag C (above) is 1. If valid, this string is used for "Unit" (line
4: Location).

EntityType - corresponding type id from DIS. This entity type is used for
"Unit" (line 4: Location).

Timestamp - contains time of last perception update

LocationXYZ - contain center of mass of aggregated unit. Feeds "Center of
Mass" (line 4: Location)

} for each subordinate

Perceived Status PDU

All battle resources will be reported with this PDU.

CommoSite, Host, and ID.- set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

EntitySite, Host, ID, and TrackNum - contains identification for "Unit
submitting report" (line 1) with respect to Monitor Unit

I Fidelity - contains 1 for self
EffectiveTime - contains "DTG of Report" (line 2)

NumBelongings - contains number of distinct types of resources to be
reported

repeat (

EntityTypeRecord - defines type of resources: personnel, equipment, etc.

PresentAmount - amount of this type of resource on hand

TotalLosses - amount of losses sustained to this type of resource

TotalGains - amount of gains for this type of resource

LossRate - num losses per second

GainRate - num gains per second

} for each resource

I

Appendix BI C31 Protocol Extension

For each repetition of Resource status, one line under "Battle
Resources" (line 5) is filled in.

"Resource" (Column 1) - found by creating a descriptive string for the
EntityTypeRecord values reported.

"Status" (Column 2) - found by taking "Authorized" (Column 3)
divided by "Operational" (Column 4) and then find the appropriate
status indicator (Green, Amber, Red, Black) based on that 1
percentage.

"Authorized" (Column 3) - found by using the following formula on
the PDU values associated with the resource type: PresentAmount +
TotalLosses - TotalGains

"Operational" (Column 4) - same as PresentAmount reported for the
resource type.

A "Summary" status can be found by combining all the "Authorized"
(Column 3) values and dividing by the sum of the "Operational"
(Column 4) values. The resulting percentage is then referenced to
find the appropriate color designator.

Perceived Tactics PDU

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

EntitySite, Host, ID, and TrackNum - contains identification of enemy unit
with respect to Monitor Unit

Fidelity - probably contains 3 for non-cooperative

NumTactics - contains number of tactics enemy unit is believed to be I
operating under

repeat {
EffectiveTime - contains time of tactics perception

CorrelationSite, Host, and Code - identifies a tactic which the enemy unit is
believed to be operating under. Feeds "Enemy Activity/Intentions" (line
7). The tactics would be displayed as: "Tactics for unit at <DTG>: <tactic
string>, <tactic string>, ..., <tactic string>.

} for each tactic

Instructions for SPOTREP creation:

The PDUs expected in a SPOTREP are listed below. For each, the fields of the PDU
are defined with reference to SPOTREPs.

Only Tactics are available for "Summary of Unit Activity" (line 3), and "Enemy I
Activity/Intentions" (line 7) for the June Demo.
Entity Commo PDU

Commo Site, Host, and ID - unique to this report

BI-16 Version 1.0

Appendix BI C31 Protocol Extension

CommoPartID - incremented from last CommoPartID
RelatedCommo Site, Host, and ID - probably 0's since SPOTREPs aren't

usually correlated with previous reports.

fromEntitySite, Host, ID, and TrackNum - contains id for "Observer" (line 1)
with respect to Monitor Unit

CorrelationSite, Host, and Code - contains code for SPOTREP
TimeOfReport - contains "DTG of Report" (line2)

NumPDUs - contains number of PDUs to be sent for this report

NumRecipients - probably only sent to I (superior)

repeat {
toEntitySite, Host, ID, and TrackNum - corresponds to superior unit.

"I for each recipient

Entity Locations PDU

A Entity Locations PDU will be used to define the type of unit observed and its
location.

CommoSite, Host, and ID - set up in Entity Commo PDU
CommoPartlD - incremented from last CommoPartID

NumEntities - probably 1.

repeat(

EntitySite, Host, and ID - contains identification for the Monitor Unit.
TrackNum - the number local to the MonitorUnit which is used to represent

the entity being reported. This value may be used to distinguish among
aggregations of the same entity type (if Flag C, below, is 0). When this
number is needed, it is used with entity type for 'Unit" (line 2: What is
Observed).

PercepFlags - A contains 0 for N/A

B probably contains 3 for non-cooperative data
C probably contains 2 for OrgName unknown
D..I contain 0 for N/A

EntityAppearance - probably all Os, possibly dead is set, if so, should be noted
in "Activity" (line 2: What is Observed)

EntityOrgCode Site, Host, and Code - contains semantic code corresponding to
org name if Flag C (above) is 1. If valid, this string is used for 'Unit" (line
2: What is Observed).

EntityType - corresponding type id from DIS. This entity type is used for
"Unit" (line 2: What is Observed).

I
BI-17 Version 1.0

I

Appendix BI C31 Protocol Extension

Timestamp - contains time of last perception update. This time feeds "Time"
(line 2: What is Observed)

LocationXYZ - contain center of mass of aggregated unit. Feeds "Locat '"
(line 2: What is Observed)

} for NumEntities

Perceived Tactics PDU

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

EntitySite, Host, ID, and TrackNum - contains identification of entity being
reported

Fidelity - probably contains 3 for non-cooperative l

NumTactics - contains number of tactics entity being reported is perceived to
be operating under

repeat (

EffectiveTime - contains time of last perception update

CorrelationSite, Host, and Code - izentifies a tactic which this unit is
perceived to be operating under. Feeds "Activity" (line 2: What is
Observed). The tactics would be displayed as: "Tactics for unit at <DTG>: 1
<tactic string>, <tactic string>, ..., <tactic string>.

} for each tactic

Perceived Status PDU

All equipment associated with entity being reported will be described with this PDU.

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - increme:.ted from last CommoPartID

EntitySite, Host,.ID, and TrackNum - contains identification for entity being
reported with respect to Monitor Unit

Fidelity - probably contains 3 for non-cooperative 1

EffectiveTime - contains time of last perception update

NumBelongings - contains number of distinct types of resources to be
reported

repeat(

EntityTypeRecord - defines type of resources: personnel, equipment, etc.

PresentAmount - amount of this type of resource on hand

TotalLosses - probably 0 for N/A

TotalGains - probably 0 for N/A

LossRate - probably 0 for N/A

I
B1-18 Version 1.0 I

I Appendix B1 C31 Protocol Extension

GainRate - probably 0 for N/A
} for each resource

For each repetition of Resource status, one phrase of "Equipment" (line 2:
What is Observed) is filled in.

Perceived Tactics PDU

I CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

I EntitySite, Host, ID, and TrackNum - contains identification for "Unit
submitting report" (line 1) with respect to Monitor Unit

Fidelity - contains I for self
NumTactics - contains number of tactics unit submitting report is intending

to use

repeat (

EffectiveTime - contains time when tactic is intended to be operational

CorrelationSite, Host, and Code - identifies a tactic which this unit intends to
follow. Feeds 'What are actions" (line 3). The tactics would be displayed as:
"Tactics for unit at <DTG>: <tactic string>, <tactic string>, ... , <tactic
string>.

) for each tactic

Instructions for SHELREP creation:

The PDUs expected in a SHELREP are listed below. For each, the fields of the PDU
are defined with reference to SHELREP.

"Azimuth to bursts" (line3) can be calculated from observer location and fire
location for display purposes. Or this line can be left blank. The CGF Engine willI always report observer location and fire location.

"Flash to bang" (line 10) can be calculated from other information reported, ifI desired for display. The CGF Engine will not report this value.

Entity Commo PDU

Commo Site, Host, and ID - unique to this report

CommoPartID - incremented from last CommoPartID

RelatedCommo Site, Host, and ID - probably O's since SHELREPs aren't
usually correlated with previous reports.

fromEntitySite, Host, ID, and TrackNum - contains id for "Unit of Origin"
(line 1) with respect to Monitor Unit

CorrelationSite, Host, and Code - contains code for SHELREP

TimeOfReport - contains GameTime of start of attack. Feeds "DTG attack
started" (line 4).

Bl-19 Version 1.0I

Appendix BI C3I Protocol Extension

NuznPDUs - contains number of PDUs to be sent for this report

Num.Recipients - probably only sent to 1 (superior)

repeat (
toEntitySite, Host, ID, and TrackNum - corresponds to superior unit.

I for each recipient

Entity Locations PDU

One Entity Locations PDU will be used to report the location of the observer
and the type and location of the attacker. (The time associated with the
attacker is used for end time of attack.)

CoznmoSite, Host, and ID - set up in Entity Commo PDUI

CommoPartID - incremented from last CommoPartID

NumEntities - number entities to be reported - probably 2 (reporter and-I
attacker)

repeat(

(iteration 1: reporter)

EntitySite, Host, and MD - contains identification for the Monitor Unit.

TrackNum - the number local to the MonitorUnit which is used to represent
the observer entity. This value may be used to distinguish among
aggregations of the same entity type (if Flag C, below, is 0).U

PercepFlags - A contains 0 for N/A
B contains 1 for self

C probably contains 1 fo:- OrgName known

D.I contain 0for N/A

EntityAppearance - probably all Os, possibly dead is set

EntityOrgCode Site, Host, and Code - contains semantic code corresponding to
org name if Flag C (above) is 1.I

EntityType - corresponding type id from DIS.

Timestamp - contains time of last perception update

LocationXYZ - contain center of mass of aggregated unit. Feeds "Observer
Location" (line 2)I

(iteration 2. attacker)

EntitySite, Host, and ID - contains identification for the Monitor Unit.

TrackNum - the number local to the MonitorUnit which is used to represent
the attacking entity. This value may be used to distinguish among

aggregations of the same entity type (if Flag C, below, is 0).

Bl-20 Version 1.0

I Appendix B1 C31 Protocol Extension

PercepFlags - A contains 0 for N/A

B contains 3 for non-cooperative data

C probably contains 2 for OrgName unknown

D..I contain 0 for N/A

EntityAppearance - probably all Os, possibly dead is set
EntityOrgCode Site, Host, and Code - contains semantic code corresponding to

org name if Flag C (above) is 1.

EntityType - corresponding type id from DIS.

Timestamp - contains end time of attack, Feeds "DTG attac:k ended" (line 5).

LocationXYZ - contain center of mass of aggregated unit. Feeds "Location of

Attack Grid" (line 6)

} end repeat

Perceived Status PDU

Number and types of equipment involved in attack are reported here.

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPart!D - incremented from last CommoPartID

I EntitySite, Host. ID, and TrackNum - contains identification for attacking unit
with respect to Monitor Unit

I Fidelity - probably contains 3 for non-cooperating

EffectiveTime - contains time of intel

NumBelongings - contains number of distinct types of attack means to be
reported

repeat(

EntityTypeRecord - defines type of equipment firing

FresentAmount - number of this type involved in attack

I TotalLosses - typically contains 0 for N/A

TotalGains - typically contains 0 for N/A

I . o LossRate - typically contains 0 for N/A

GainRate - typically contains 0 for N/A

) for each resource

For each repetition of Resource status, one phrase of "Number and Nature"
I (line 7) is filled in.

Perceived Tactics PDU

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

B1-21 Version 1.0I

Appendix B1 C31 Protocol Extension

EntitySite, Host, ID, and TrackNum - contains identification of enemy unit
with respect to Monitor Unit

Fidelity - probably contains 3 for non-cooperative

NumTactics - contains number of perceived attacker tactics, probably 1

repeat (

EffectiveTime - contains time of tactics perception

CorrelationSite, Host, and Code - identifies a tactic which the enemy unit is
believed to be operating under. (i.e. Barrage, Registration, etc). Feeds
"Nature of Fire" (line 8). The tactics would be displayed as: "Firing tactics I
for unit at <DTG>: <tactic string>, <tactic string>, ..., <tactic string>.

} for each tactic

Perceived Status PDU

All battle resources affected by attack will be reported with this PDU.

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartlD - incremente :1 from last CommoPartID

EntitySite, Host, ID, and TrackNum - contains identification for unit
submitting report with respect to Monitor Unit

Fidelity - contains 1 for self
EffectiveTime - contains time of intel

NumBelongings - contains number of distinct types of resources to be I
reportee

repeat (

EntityTypeRecord - defines type of resources: personnel, equipment, etc.

PresentAmount - amount of this type of resource on hand

TotalLosses - amount of losses sustained to this type of resource

TotalGains - amount of gains for this type of resource

LossRate - num losses per second

GainRate - num gains per second

) for each resource

For each repetition of Resource status, one phrase for "Damage" (line 11) is
filled in. Can be reported as percentages or present amounts I

Instructions for Contact Report creation:

The PDUs expected in a Contact Report are listed below. For each, the fields of the
PDU are defined with reference to Contact Reports.

"Direction" (line3) can be foi.-.d by finding the azimuth from the observed unit
location and the reporting unit location (from last perception update).

B1-22 Version 1.0 I

Appendix BI C3 Protocol Extension

Entity Commo PDU

Commo Site, Host, and ID - unique to this report

CommoPartID - incremented from last CommoPartID

RelatedCommo Site, Host, and ID - probably 0's since Contact Reports aren't
usually correlated with previous reports.

fromEntitySite, Host, ID, and TrackNum - contains id for "Observer" (line 1)
with respect to Monitor Unit

CorrelationSite, Host, and Code - contains code for Contact Report

TimeOfReport - contains time of contact

NumPDUs - contains number of PDUs to be sent for this report

NumRecipients - probably only sent to 1 (superior)

*repeat(

toEntitySite, Host, ID, and TrackNum - corresponds to superior unit.

) for each recipient

Entity Locations PDU

A Entity Locations PDU will be used to define the type of unit contacted and its
location.

CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

NumEntities - contains 1

repeat (
EntitySite, Host, and ID - contains identification for the Monitor Unit.

TrackNum - the number local to the MonitorUnit which is used to represent
the entity contacted. This value may be used to distinguish among
aggregations of the same entity type (if Flag C, below, is 0). This number is
not needed for the Contact Report

PercepFlags - A contains 0 for N/A

B probably contains 3 for non-cooperative data
C probably contains 2 for OrgName unknown

D..I contain 0 for N/A

EntityAppearance - probably all Os, possibly dead is set

EntityOrgCode Site, Host, and Code - contains semantic code corresponding to
org name if Flag C (above) is 1.

EntityType - corresponding type id from DIS. This type feeds 'Type of unit"
(line 2).

Timestamp - contains time of last perception update.

I
B1-23 Version 1.0I

Appendix B1 C31 Protocil Extension

LocationXYZ - contain center of mass of observer unit.

) for NumEntities

Instructions for REQUEST FOR ENGINEERS creation:

The PDUs expected in a REQUEST FOR ENGINEERS are listed below. For each, the m
fields of the PDU are defined with reference to REQUEST FOR ENGINEERS.

Entity Conmo PDU

Commo Site, Host, and ID - unique to this report

CommoPartID - incremented from last CommoPartID

RelatedCommo Site, Host, and ID - probably O's since Requests For Engineers
aren't usually correlated with previous reports.

fromEntitySite, Host, ID, and TrackNum - contains id for "Unit submitting I
report" (line 1) with respect to Monitor Unit

CorrelationSite, Host, and Code - contains code for Request For Engineers

TimeOfReport - contains "DTG of Report" (line2)

NumPDUs - contains number of PDUs to be sent for this report

NumRecipients - probably only sent to 1 (superior)

repeat{

toEntitvSite, Host, ID, and TrackNum - corresponds to superior unit.

} for e :h recipient 3
General Purpose Request PDU

CommoSite, Host, and ID - set up in Entity Commo PDU

WhenFlag - 1, 2, or 3 depending on situation

Priority - 1 for Flash

2 for Immediate

3 for Priority

4 for Routine

RequestTime - contains time of request

DeliveryTime - time to meet at Delivery Point

DeliveryXYZ - location to meet for coord. ation

Correlation Site, Host, and Code - probably no tactic associated here.
NumRequests - number of things requested probably only 1

repeat(m

EntityTypeRecord - identifies type of thing needed - here Engineers

Shell, Fuze - Os for N/A

Quantity - specifies amount needed

I
B1-24 Version 1.0 I

Appendix B1 C31 Protocol Extension

) for NurnRequests
Instructions for Call For Fire creation:

The PDUs expected in a Call For Fire are listed below. For each, the fields of the PDU
I are defined with reference to Call For Fire.

Entity Commo PDU

Commo Site, Host, and ID - unique to this report

CommoPartID - incremented from last CommoPartID
RelatedCommo Site, Host, and ID - probably O's since Call For Fire isn't

usually correlated with previous reports.

fromEntitySite, Host, ID, and TrackNum - contains id for entity requesting
fire support. Feeds "Requesting Unit" (line 1) with respect to Monitor Unit

CorrelationSite, Host, and Code - contains code for Call For Fire

TimeOfReport - contains "DTG of Report" (line2)
NumPDUs - contains number of PDUs to be sent for this report

NumRecipients - probably only sent to 1 (superior or attached fire capable
unit or FDC)

repeat (
toEntitySite, Host, ID, and TrackNum - curresponds to unit to receive firerequest.

for each recipient

General Purpose Request PDU
CommoSite, Host, and ID - set up in Entity Commo PDU

CommoPartID - incremented from last CommoPartID

WhenFlag - 1, 2, or 3 depending on situation. Feeds "Method of Fire Control"
(line 7).

Priority - 1 for Flash

2 for Immediate
S3 for Priority

4 for Routine

Feeds "Priority" (line 2)

RequestTime - contains time of request
DeliveryTime - time to fire if WhenFlag = 3. If valid, feeds "Method of Fire

Control" (line 7)
DeliveryXYZ - location to fire at. Feeds 'Target Location" (line 4). This value

is always a grid coordinate (WGS84).

I
B1-25 Version 1.0

I

Appendix BI C31 Protocol Extension

CorrelationSite, Host, and Code - identifies a tactic for AdjustFire,
FireForEffect, or other fire tactic. Feeds "Type of Fire" (line 3).

NumRequests - 1 for one type of firing

repeat(
EntityTypeRecord - identifies type of guns

Shell, Fuze - shell and fuze to use or 0 for FDC to figure it.

Quantity - specifies number of bursts for this ammo.

) for NumRequests

Entity Locations PDU

A Entity Locations PDU will be used to define the type of target unit and its
location.

CommoSite, Host, and ID - set up in Entity Commo PDU
CommoPartID - incremented from last CommoPartlD

NumEntities - probably one

repeat(

EntitySite, Host, and ID - contains identification for the Monitor Unit.

TrackNum - the number local to the MonitorUnit which is used to represent
the entity targeted. This value may be used to distinguish
among aggregations of the same entity type (if Flag C below is 0).
This number is not needed for the Contact Report. 1

PercepFlags - A contains 0 for N/A

B probably contains 3 for non-cooperative data

C probably contains 2 for OrgName unknown

D..I contain 0 for N/A

EntityAppearance - probably all Os, possibly dead is set,

EntityOrgCode Site, Host, and Code - contains semantic code corresponding to
org name if Flag C (above) is 1.

EntityType - corresponding type id from DIS. This entity type is used for
"Target Description" (line 5). 1

Timestamp - contains time of last perception update.

LocationXYZ - contain center of mass of aggregated unit. Probably same as
location fire is called for.

} for NumEntities

I
Bl-26 Version 1.0 1n

l

I Appendix B1 C31 Protocol Extension

I 3. DETAILED REQUIREMENTS

The material for in this section should be suitable for insertion in Section 5
"Detailed Requirements" of the DIS protocol standard. If this is a SIMNET protocol
extension, the information should still be in this format.

3.1. INTRODUCTION

This section defines the PDUs and their fields.

3.2. REPRESENTATION OF DATA

This paragraph will note any variation with the base standard's representation of
* data.

3.2.1. Enumerated Radix 10

I TBS

3.3. BASIC DATA TYPES AND RECORDS

I This paragraph will define any basic data types or records that are added/changed by
this protocol extension. Data types and records should be defined in this section if
they are referenced multiply or they may be useful outside of this protocol
extension.

3.3.1. Correlation Identifier Record

3.3.1.1. Simulation Application Record.

I Note: This definition should replace paragraph 5.3.8.1 in [IST 1993)

A simulation application's address shall be specified by a Simulation Application
Record. A Simulation Application Record shall consist of the site identification
number and the host identification number. These fields are described in 3.3.1.1.
and 3.3.1.2. The Simulation Application Record is represented in Fig 3-1.

3.3.1.1. Site Identifier.

I Each DIS site shall be assigned a unique site identifier. No site shall be assigned an
- ID containing all zeros or all ones. The mechanism by which site IDs are assigned is

outside the scope of this standard. This identifier shall be specified by a 16-bit
unsigned integer.

3.3.1.2. Application Identifier.

I Each application at a DIS site shall be assigned a host identifier unique within that
site. No application shall be assigned an ID containing all zeros or all ones. The
mechanism by which application IDs are assigned is outside the scope of this
standard. This identifier shall be specified by a 16-bit unsigned integer.

I
B1-27 Version 1.0I

Appendix BI c3I Protocol Extension I

I Site Identifier 16-bit unsigned integer

Applicaion Identifier 16-bit unsigned integer

Fig 3-3-1

Simulation Application Record

3.3.1.2. Correlation Identifier

I Simulation Application 32 =bits] 1I Record
I

r Correlation Code 32-bit unsigned integer

Fig 3-3-2

Correlation Identifier Record

3.4. PROTOCOL DATA UNITS FOR PROTOCOL EXTENSIONS I

3.4.1. Basic Data Types and Records

This paragraph will define any basic data types or records that are used by this
protocol extension. Normally this paragraph contains only information data types
and records that are used by multiple PDUs or multiple times with a PDU.

3.4.2. List of PDUs in Protocol Extension

The C31 protocol extension for

PDUs FOR INITIALZATION:

Correlation

Perception Control

Non-Point Control Measures

Point Control Measures

Po:ait Control Measure with Relations

PDUs FOR COMMUNICATIONS:

Er ity Communication
Ctrl Measures for Commo

Entity Locations I
Task Organization

General Purpose Request I
Perceived Status

Perceived Tactics

Incident / Situation

IB1-28 Version 1.0

I

EAppendix B1 C31 Protocol Extension

PDUs FOR SIMRULATION CONTROL:
(Re)Start

Admin Request

Impending Admin Action

3.4.3. Incident PDU

Incidents and situations shall be communicated by using the Incident PDU. The
Incident PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) From entity ID - unique initiating entity identifier

3) To entity ID - unique receiving entity identifier

4) About entity ID - unique indirect object entity ideniifier

5) Scenerio Time - effective scenario time for the incident/situation
6) StringLength - length of correlation string
7) Incidentcode - code which describes an incident happening between the

given entities. This code is normally defined by correlation PDUs.

The Incident PDU is represented in Figure 3-4-1.

Field Size Incident/Situation PDU FIELDS
(bits) __ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

Protocol Version - 8 bit unsigned integer

32 PROTOCOL Exercise ID - 8 bit unsigned integerSHEADER PDU Type -8 bit enumeration
HEADER PULength - 8 bitunsigned integer

Site - 16 bit unsigned integer48 FROM ENTITY ID Application - 16 bit unsigned integer
Entity - 16 bit unsigned integer

I Site - 16 bit unsigned integer
48 TO ENTITY ID Application - 16 bit unsigned integer

_Entity - 16 bit unsigned integer

"Site - 16 bit unsigned integer
48 ABOUT ENTITY K Application - 16 bit unsigned integer

* Entity - 16 bit unsigned integer

16 PADDING 16 bit unused

S64 SCENERIO TIME 64 bit unsigned integer
32 INCIDENT CODE 32 bit unsigned integer

Figure 3-4-1. Incident/Situation PDU

I B1-29 Version 1.0

I

Appendix BI C31 Protocol Extension

3.4.4. Correlation PDU

This format is used to relate a code to a character string and to define any supporting I
information. The Correlation PDU shall contian the following fields:

1) PDU Header - The PDU F- .tader shall be represented by the PDU Header I
Record (see 5.3.15. of [IST 19,3].

2) Correlation ID - unique identifier of tie correlation that is being defined.
See 3.3.1.2-

3) SupportingInfoOrder - 0 for correlation code, >0 order for supporting

information
4) Scenerio Time - effective scenario time for correlation

5) StringLength - length of correlation string

6) CorrelationString - character string describing thing being correlated or the
supporting information

The Correlation PDU is represented in Figure 3-4-2.
Field SizeI

(bits) Correlation PDU FIELDS

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsigned integer- I

HEADER PDU Type - 8 bit enumeration
Length - 8 bitunsigned integer

CORRELATION Site - 16 bit unsigned integer
64 M Application - 16 bit unsigned integer

Correlation Code - 32 bit unsigned integer

32 SUPPORTING 32 bit unsigned integer

64 SCENERIO TME 64 bit unsigned integer

repeat 32 STRING LENGTH 32 bit unsigned integer
STRING
LENGTH nSxR8 8 bit unsignied integer

Figure 3-4-2. Correlation PDU

3.4.5. Perception Control PDU

This PDU will be used to control perception reports for entities. The Perception I
Control PDU shall contian the following fields:

1) PDU Header - This field shall be represented by the PDU Header Record
(see 5.3.15. of UIST 1993].

2) Entity Identification - This field shall be represented by the Entity
Identification Record (see 5.3.8. of [IST 1993].

3) Perception Code - Flag defining perception. See 4.2.3.

BI-30 Version 1.0 I

Appendix B1 C31 Protocol Extension

5) Timestamp - Scenario time for perception control

The Perception Control PDU is represented in Figure 3-4-3.

Field Size
(bits) PERCEPTION CONTROL PDU FIELDS

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID -8 bit unsigned integer

HEADER PDU Type - 8 bit enumeration
Length - 8 bitunsigned integer

Site - 16 bit unsigned integer
48 ENTITY ID Application - 16 bit unsigned integer

Entity - 16 bit unsigned integer

16 PADDING 16 bit unused

32 PERCEPTION 32 bit unsigned integer

64 TIMESTAMP 64 bit unsigned integer

Figure 3-4-3. Perception Control PDU

3.4.6. Entity Communication PDU

This PDU will be used to describe communication between entities. The Entity
Communication PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) Communication ID - Unique identifier of the communication event and
shall be represented by the Thing Identification Record defined in 3.3.3.

3) CommoPartID - Always 0 for first part of commo

4) RelatedCommoID - Unique ID for related commo

5) From Entity Identification - This field identifies the entity initiating a
communication and shall be represented by the Entity Identification
Record (see 5.3.8. of [IST 1993].

I 6) From Entity Track Num - Monitor Unit's Track number for "from" unit

7) CorrelationID - correlation code identifying type of communication. See
3.3.1.2.

8) TimeOfReport - Time report was created

9) NumPDUs - Number of PDUs for this commo

10) Number Recipients- Number of recipient entities

11) To Entity ID - Unique identifier for each commo destination entity

12) To Entity Track Num - Monitor Unit's Track number for "to" unit

Bl-31 Version 1.0I

Appendix B1 C31 Protocol Extension

The Entity Communication PDU is represented in Figure 34-4.

Field Size
(bits) ENTITY COMMUNICATION PDU FORMAT

Protocol Version - 8 bit unsigned integer

32 PROTOCOL Exercise ID - 8 bit unsigned integer 1
HEADER PDU Type - 8 bit enumerationLength - 8 bitunsigned integer

Site - 16 bit unsigned integer
48 COMMO ID Application - 16 bit unsigned integer

Commo - 16 bit unsigned integer

16 COMMO PART If 16 bit unsigned integer

RELATED Site - 16 bit unsigned integer
48 RELATEID Application - 16 bit unsigned integerCOMMO ED Comnmo - 16 bit urisiened integer

S FROM Site - 16 bit unsigned integer
FROI Application - 16 bit unsigned integerApplEntity - 16 bit unsigned integer

16~ FRO ENTIty -16 bit unsigned integer16 FROM ENTITYi

_______ TRACK 16 bit unsigned integer

16 PADDING 16 bit unused

CORRELATION Site - 16 bit unsigned integer I
64 ID Application - 16 bit unsigned integer

ID__ _ Correlation Code - 32 bit unsigned integer

64 TIME OF REPORI 64 bit unsigned integer

32 NUMBER 32 bit unsigned integer

32 NUMBER
32 RECIPIENT 32 bit unsigned integer

repeat Site - 16 bit unsigned integer i
NUMBERe 48 TO ENTITY ID Application - 16 bit unsigned integer

RECIPIENT Entity - 16 bit unsigned integer

times 16 FROM ENTITY 16 bit unsigned integer

tiesTRACK I______________I__

Figure 3-4-4 Entity Communication PDU

3.4.7. Task Organization i
This PDU will be used to describe the subordinates of a single entity.. The Task
Organization PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) Communication ID Unique identifier of the communication event and
shall be represented by the Thing Identification Record defined in 3.3.3.

I
B1-32 Version 1.0

I

Appendix B1 C31 Protocol Extension

3) Communication Part ID Identifies this PDU uniquely within this
communication event specified by the Communication ID.

4) Entity Identification - This field identifies the entity initiating a
communication and shall be represented by the Entity Identification
Record (see 5.3.8. of (IST 1993].

5) Entity Track Number - Monitor Unit's Track Number for entity.

6) CorrelationID - Code identifying type of command chain. See 3.3.1.2.

7) Number Subordinates - number of subordinates following

8) Scenerio Time - effective scenario.time for task organization

9) Subodinate Entity ID - This field identifies the entity initiating a
communication and shall be represented by the Entity Identification
Record (see 5.3.8. of lIST 1993].

10) Subodinate Track Number - Monitor Unit's Track Number for entity.

The Task Organization PDU is represented in Figure 3-4-5.

Field Size
(bits) TASK ORGANIZATION PDU FIELDS

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsigned integer

HEADER PDU Type - 8 bit enumeration
Length - 8 bitunsigned integer

Site - 16 bit unsigned integer
48 COMMO ID Application - 16 bit unsigned integerThing - 16 bit unsigned integer

16_ _COMMO 16_bitunsignedinteger
16 PARTCID 16 bit unsigned integer

-- 48MONITOR Site - 16 bit unsigned integer

48 MApplication - 16 bit unsigned integer
ENTITY ID Entity - 16 bit unsigned integer

16 MONITOR 16 bit unsigned integerENTITY TRACK

CORRELATION Site - 16 bit unsigned integer
64 ID Application - 16 bit unsigned integer

NUMBERD rorrelntion Code - 12 hit ungigned inteIerI] -- -
32 SUBORDINATES 32 bit unsigned integer

64 SCENERIO TIME 64 bit unsigned integer

repent SUBORDINATE Site - 16 bit unsigned integer
NUMBER 48ENTITY ID Application - 16 bit unsigned integer

SUBORDINATE Entity - 16 bit unsigned integer

times 16 SUBORDINATE
ENTITY TRACK 16 bit unsigned integer

Figure 3-4-5. Task Organization PDU

B1-33 Version 1.0

Appendix B1 C31 Protocol Extension

3.4.8. (Re)Start PDU

"-his PDU will be issued just prior to starting the simulation or restarting the I
mulation (after being paused). The (Re)Start PDU shall contian the followingL elds:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) ScenarioTimeUnits Units of Measure for scenario time I
3) ScenarioStartTime Beginning time for scenario

4) TimeCoordinate x WGS84 X for scenario start time I
5) TimeCoordinate y WGS84 Y for scenario start time

6) TimeCoordinate z WGS84 Z for scenario start time I
7) GameStartTime Game Time at (re)start

8) CountToStart Delta wall clock time until (re)start (in seconds)

9) RealTimeMult Execution speed as fraction of wall clock time

The (Re)Start PDU is represented in Figure 3-4-6.

Field Size
(bits). (RE)START PDU FORMAT

Protocol Version - 8 bit unsigned integer

32 PROTOCOL Exercise ID - 8 bit unsigned integer
HEADER PDU Type - 8 bit enumeration

Length - 8 bitunsigned integer

32 SCENARIO 32 bit unsigned integer
SCENARIO

64____)TART TuIME 64 bit unsigned integer
64 TIME

64 COORDINATEX

64 COORDINATE X 64 bit unsigned integer
64TIMEICOORDINAT .. 6- bit unsigned integerY

64 TME 64 bit unsigned integer
64 COOUDNATE TO

64 GAME START 64 bit unsigned integer
TIME

64 COUNTTO 64 bit unsigned integerSTART ______________ __

64 REAL TIME 64 bit unsigned integer

Figure 3-4-6. (Re)Start PDU I
I

B1-34 Version 1.C

I

i Appendix B1 C3I Protocol Extension

3.4.9. Admin Request PDU

This PDU will be sent to the Master Controller (CGF Engine) whenever changes to
the execution parameters of the simulation are desired. The Admin Request PDU
shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) ActionRequested - Administrative Request. See 4.2.4.

3) EffectiveGameTime - Effective absolute game time for request

4) CountToStart - Requested delta wall clock time until change

5) RealTimeMult - New real time multiple or 0

The Admin Request PDU is represented in Figure 3-4-7..

Field Size
(bits) ADMIN REQUEST PDU FORMAT

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsigned integerHEADER PDU Type • 8 bit enumeration

Length - 8 bitunsigned integerI ACTION______

32 ACTION 32 bit unsigned integer
I R4EQUESTIED

EFFECTIVE 64 bit unsigned integer
COUNGAME TIME

64 COUNTTO 64 bit unsigned integer
_____ START I

64 REAL TIME 64 bit unsigned integer
_____ MULT I

I Figure 3-4-7. Admin Request PDU

3.4.10. Impending Admin Action PDU

This PDU will be issued by the Master Controller (CGF Engine) whenever changes to
the execution parameters of the simulation are going into effect. The Impending

S Admin Action PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) ImpendingAction - Impending Administrative Action. See 4.2.5.
3) EffectiveGameTime - Effective absolute game time for request

5) RealTimeMult - New real time multiple or 0
I The Impending Admini Action PDU is represented in Figure3-4-8.

B1-35 Version 1.0i

Appendix BI C31 Protocol Extension

Field Size
(bits) IMPENDING ADMIN REQUEST PDU FORMAT I

Protocol Version - 8 bit unsigned integer

32 PROTOCOL Exercise ID - 8 bi. ronsigned integer
HEADER PDU Type - 8 bit enumerationLength - 8 bitunsigned integer

32 IMEDTING 32 bit unsigned integer

EFACTION
64 GAMEECTIME 64 bit uitsigned integer64 RAEA TIME

64 REAL TIME 64 bit unsigned integerMULT I
Figure 3-4-8. Impending Admin Action PDU

3.4.11. General Purpose Request PDU

This PDU shall communicate general purpose requests. The General Purpose
Request PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) CommolD - Unique identifier for commoa

3) CommoPartID - Identifies this PDU uniquely within this commo

4) Priority - Priority of Request (0..65535)

5) WhenFlag - When to perform request. See 4.2.2.

6) Correlation ID - Site identifier for commo origination I
7) RequestTime - GameTime of request

8) DeliveryTime - GameTime to perform request I
9) Delivery Location - Location to deliver to or meet at

10) NumRequests - Number of requests enumerated below

11) EntityType - Define the type of resource needed

12) Fuze - Fuze type if needed

13) Warhead - Warhead type if needed

14) Quantity - Number of this type needed

The General Purpose Request PDU is represented in Figure 3-4-9.

I
I
I

B 1-36 Version 1.0

I

I Appendix B1 C31 Protocol Extension

Field Size
(bits) GENERAL PURPOSE REQUEST PDU FIELDS

Protocol Version - 8 bit unsigned integer
PROTOCOL Exercise ID - 8 bit unsigned integer

32 HEADER PDU Type - 8 bit enumerauon
Length - 8 bitunsigned integer

Site - 16 bit unsigned integer
48 COMMO ID Application - 16 bit unsigned integer

Thing - 16 bit unsigned integer

16 COMMO 16 bit unsigned integerPART ID

16 PRIORITY 16 bit unsigned integerU 16 WHEN FLAG 16 bit unsigned integer
CORRELATION Site - 16 bit unsigned integer

64 ID Application - 16 bit unsigned integer
Correlation Code - 32 bit unsigned integer

64 REQUEST TIME 64 bit unsigned integer
64 DELIVERY TIME 64 bit unsigned integer

DELIVERY X-Component - 64 bit floating point
192 LOCATION Y-Component - 64 bit floating point

Z-Component - 64 bit floating point

32 NUER 32 bit unsigned integer
_____ REQUESTS __________ ______

r 64 ENTITY TYPE 64 bit unsigned integerrepeait

NUMBER 8 FUZE 8 bit enumerated
REQUESTS 8 WARHEAD 8 bit enumerated

16 QUANTITY 16 bit unsigned integer

Figure 3-4-9. General Purpose Request PDU

3.4.12. Perceived Status PDU

I The Perceived Status PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of lIST 1993].

2) CommoID - Unique identifier for commo on this site and host

3) CommoPartID - Identifies this PDU uniquely within this commo

4) EntitylD - Unique ID for Monitor Unit on this site and host

I 5) EntityTrackNum - Monitor Unit's Track Number for entity

6) Fidelity - Fidelity of Data. See 4.2.1.

7) EffectiveTime - Effective Game Time for status report

8) NumBelongings - Number battle resources types reported

I
B1-37 Version 1.0I

Appendix B1 C31 Protocol Extension

9) EntityType - EntityType Record describing battle resource

10) PresentAmt - quantity of battle resource on hand I
11) TotalLosses - absolute value of losses

12) TotalGains - absolute value of gains

13) LossRate - losses per second

14) GainRate - gains per second

The Perceived Status PDU is represented in Figure 3-4-10.

Field SizeI
(bits) PERCEIVED STATUS PDO FORMAT

Protocol Version - 8 bit unsigned integer

32 PROTOCOL Exercise ID - 8 bit unsigned integer
HEADER PDU Type - 8 bit enumeration

Length - 8 bitunsigned integer

Site - 16 bit unsigned integer
48 COMMO ID Application - 16 bit unsigned integer

Thing - 16 bit unsigned integer

16 COMMO 16 bit unsigned integerPART ID 1

MONITOR Site - 16 bit unsigned integer
48 Application - 16 bit unsigned integer

ENTITY ID Entity - 16 bit unsigned integer

16 MONITOR 16 bit unsigned integerS.....ENTITY TRACK

16 FIDELITY 16 bit enumeration

64 EFFECTIVE TIME 64 bit unsigned integer

32 NUMBER 32 bit unsigned integerBELONGINGS

64 ENTITY TYPE 64 bit enumerated
64 ON HAND 64 bit enumerated

repeat
NUMBER 32 TOTAL LOSSES 32 bit floating point

BELONINGS 32 TOTAL GAINS 32 bit floating point
times

32 LOSS RATE 32 bit floating point
32 GAIN RATE 32 bit floating point

Figure 3-4-10. Perceived Status PDU

3.4.13. Entity Locations PDU I
This PDU will be used to describe entity locations, etc. The Entity Locations PDU
shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) CommoID - Unique identifier for commo on this site and host I
3) CommoPartID - With commo information forms unique id for this PDU

B1-38 Version 1.0

I

Appendix B1 C31 Protocol Extension

4) NumEntities - Number of Entity locations defined
5) EntityID - Unique ID for Monitor Unit on this site and host
6) TrackNum - Monitor Unit's Track Number for related entity
7) PercepFlags - Perception flags ABCDEFGHI (radix 10)
8) EntityAppear. - Entity Appearance Flag
9) Correlation ID - Correlation Code for Entity Organization
10) EntityType - (same as DIS) used to describe type of thing reported
11) Timestamp - effective game time for Perception
11) Origin Location - origin Z location

The Entity Locations PDU is represented in Figure 3-4-11.

Field Size
(bits) ENTITY LOCATIONS PDU FORMAT

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsignedinteger

HEADER PDU Type - 8 bit enumeration
Length - 8 bitunsigned integer
Site - 16 bit unsigned integer

48 COMMO ID Application - 16 bit unsigned integer

Commo - 16 bit unsigned integer

16 COMMO PART IE 16 bit unsigned integer

32 NUMBER 32 bit unsigned integer
ENTITIES

MONITOR Site - 16 bit unsigned integer
48 ENTITY ID Application - 16 bit unsigned integer
6MONITOR Entity - 16 bit unsigned integer

16 ENTITY TRACK 16 bit unsigned integer

32 PERCEPTION 32 bit radix 10
FLAG

32 ENTITY 32 bit enumeration
repeat APPEARANCE

NUMBER
ENTITIES 64 CORRELATION Site - 16 bit unsigned integertimesApplication - 16 bit unsigned integzer

times 1ID Correlation Code - 32 bit unsigned integer

16 PADDING 16 bit unsigned integer

64 ENTITY TYPE 64 bit unsigned integer

64 TIMESTAMP 64 bit unsigned integer
ORIGIN X-Component - 64 bit floating point

192 LOCAIGON Y-Component - 64 bit floating point
Z-Component - 64 bit floating point

I Figure 3-4-11. Entity Locations PDU

I
B1-39 Version 1.0

I

Appendix B1 C3I Protocol Extension

3.4.14. Non-Point Control Measures PDU

This PDU will be used to describe control measures consisting of multiple points. i
The Non-Point Control Measures PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of U1ST 19931.

2) CtrlMeasID - Unique identifier for control measure
3) Correlation ID - correlation code for tactic to be associated with ctrl I
4) Priority - (unsigned) Priority of effort/position
5) ShapeFlag - Type of Shape
6) EntityType - (same as DIS) used to describe type of thing reported
7) Timestamp - effective game time for control measure
8) Origin Location - origin Z location
9) NumPoints - number of points following to define Ctrl Measure
10) Location - relative location coordinate of subsequent point

The Non-Point Control Measures PDU is represented in Figure3-4-12.

Field Size
(bits) NON-POINT CTRL MEASURES PDU FORMAT

Protocol Version - 8 bit unsigned integer

32 PROTOCOL Exercise ID - 8 bit unsigned integer
HEADER PDU Type - 8 bit enumeration

Length - 8 bitunsigned integer

CTRIu Site - 16 bit unsigned integer
48 MEASUREID Application - 16 bit unsigned integer

Entity - 16 bit unsigned integer
16 PADDING 16 bit unused

CORRELATION Site - 16 bit unsigned integer
64 CIO Application - 16 bit unsigned integerI) Correlation Code - 32 bit unsigned integer

16 PRIORITY 16 bit unsigned integer i
64 SHAPE FLAG 64 bit unsigned integer

64 ENTITY TYPE 64 bit unsigned integer

64 TIMESTAMP 64 bit unsigned integer

ORIGIN X-Component - 64 bit floating point
192 LOCA71ON Y-Component - 64 bit floating point

NUMBER Z-Component - 64 bit floating point I
32 POINTS 32 bit unsigned integerPOINTS ___________________

repeat X-Component - 64 bit floating point
NUMBER 192 ORIGIN X-Component -64 bit floating point

POINTS YLOCATION -Component -64 bit floating pointLOCATION Z-Component - 64 bit floating point
times II

Figure 3-4-12. Non-Point Control Measures PDU i
B

B1-40 Version 1.0

I

Appendix B1 C3I Protocol Extension

3.4.15. Point Control Measures PDU

This PDU will be used to describe single point control measures. The Point Control
Measures PDU shall contian the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of lIST 1993].

2) NumCtrlMeasures - Number of single point control measures in this PDU

3) CtrlMeasID - Unique identifier for control measure

4) Correlation ID - Correlation code for tactic associated with ctrl.

5) Priority - (unsigned) Priority of effort/position

6) ShapeFlag - Type of Shape

7) EntityType - (same as DIS) used to describe type of thing reported

8) Timestamp - effective game time for control measure

9) Location- origin location

The Point Control Measures PDU is represented in Figure 3-4-13.

Yield Size
(bits) POINT CTRL MEASURES PDU FORMAT

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsigned integer

HEADER PDU Type - 8 bit enumeration
__ _Length - 8 bitunsigned integer

32 NUMBER CTRL 32 bit unsigned integer

CTR Site - 16 bit unsigned integer
48 CTRL Application - 16 bit unsigned integer

MEASURE ID Entity - 16 bit unsigned integer

16 PADDING 16 bit unused

repeat CORRELATION Site - 16 bit unsigned integer
NUMBER 64 ID Application - 16 bit unsigned integer

CTRL Correlation Code - 32 bit unsigned integer
MEASURES

times 16 PRIORITY 16 bit unsigned integer

64 SHAPEFLAG 64 bit unsigned integer

64 ENTITY TYPE 64 bit unsigned integer

64 TIMESTAMr 64 bit unsigned integer

Figure 3-4-13 Point Control Measures PDU

I
I

B 1-41 Version 1.0

I

Appendix B1 C31 Protocol Extension

3 jf.416 ___pse',Vt Control Measures with Relations PDU

This PDU will be used to describe a point control measure and to relate it to other 1
p7 v'iously defined control measures. The Point Control Measures with Relations
PUU shall contian the following fields:

1) PDU Header - The PDU Heade- ;hall be represented by the PDU Header
Record (see 5.3.15. of [IST 19931.

2) NumCtrlMeasures - Number of single point control measures in this PDU 1
3) CtrlMeasID - Unique identifier for control measure
4) Correlation ID - Correlation code for tactic associated with ctrl.
5) Priority - (unsigned) Priority of effort/position 1
6) Shaperlag - Type of Shape
7) EntityType - (sa: ý as DIS) used to describe type of thing reported
8) Timestamp - effective game time for control measure
9) Location - origin location
10) NumRelations (32) number of Related control measures
11) CtrlMeasID (16) Unique identifier for related control measure

The Point Control. Measures with Relations PDU is represented in Figure 3-4-14.

Field Size I
(bits) CTRL MEASURES WITH RELATIONS PDU FORMAT

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsigned integer

HEADER PDU Type - 8 bit enumeration
Length -8 bitunsigned integer u
Site - 16 bit unsigned integer

48 MARE Application - 16 bit unsigned integer
MEAU D Entity - 16 bit unsigned integer

16 PADDING 16 bit unused

CORRELATION Site - 16 bit unsigned integer
64 ID Application - 16 bit unsigned integer

Correlation Code - 32 bit unsigned integer

16 PRIORITY 16 bit unsigned integer

64 ENTITY TYPE 64 bit unsigned integer

64 T1MES' A:.'P 64 bit unsigned integer

ORi... X-Component - 64 bit floating point
192 LOCATION Y-Component - 64 bit floating point

NUMBER Z-Component - 64 bit floating point

32 RELATIONS 32 bit unsigned integer
repeat Se - 16 bit floating point

NUMBER ORIGIN Host - 16 bit floating point
REALATION 48 LOCATION Relt - 16 bit floating point

times IRelation - 16 bit floating point
Figure 3-4-14. Point Control Measures with Relations PDU I

B
B1-42 Version 1.0

__ I

I Appendix BI C31 Protocol Extension

3.4.17. Ctrl Measures for Commo PDU

This format is used define which previously defined control measures should be
used with this communication. The Ctrl Measures for Commo PDU shall contian
the following fields:

1) PDU Header - The PDU Header shall be represented by the PDU Header
Record (see 5.3.15. of [IST 1993].

2) CommoID - Unique identifier for commo on this site and host

3) CommoPartID - With commo information forms unique id for this PDU

4) NumCtrlMeasures - Number of control measures to use with commo

5) CtrlMeasID - Unique ID for control measure

The Ctrl Measures for Commo PDU is represented in Figure 3-4-15.

Field Size
(bits) CTRL MEASURES FOR COMMO PDU FORMAT

Protocol Version - 8 bit unsigned integer
32 PROTOCOL Exercise ID - 8 bit unsigned integer

HEADER PDU Type - 8 bit enumeration
Length - 8 bitunsigned integer

Site - 16 bit unsigned integer
48 COMMO ID Application - 16 bit unsigned integer

Commo - 16 bit unsigned integer

16 COMMO PART It 16 bit unsigned integer

32 NUMBER 32 bit unsigned integer
TNUR• R Site-16 bit unsigned integer

MEASURES 48 TO ENTITY ID Application - 16 bit unsigned integer
_ _times Entity - 16 bit unsigned integer

Figure 3-4-15. Ctrl Measures for Commo PDU

I
I-
I
I
I
I

B1-43 Version 1.0

I

Appendix BI C31 Protocol Extension

4. ENUMERATED AND BIT ENCODED VALUES FOR USE WITH
(PROTOCOL EXTENSION)

The material for in this section should be suitable for insertion in the "Enumerated l
and Bit Encoded Values for Use with Protocols for Distributed Interactive
Simulation Applications" document that accompanies the base standard (see section
1.1). If this is a SIMNET protocol extension, the information should still be in this
format.

4.1. UPDATED FIELDS

4.1.1. PDU Kind

This field is 4.3.1.6 of [IST 1993]. The following values were appended to this field by
the protocol extension.

Field Value PDU Kind
140 Incident/Situation
142 Correlation
144 Perception Control
145 Entity Communication
149 Task Organization
150 (Re)Start
151 Admin Request
152 Impending Admin Action
153 General Purpose
153 General Purpose Request

154 Perceived Status
155 Perceived Tactics
156 Entity Locations
157 Non-Point Control Measures
158 Point Control Measures
159 Point Control Measure with Relations
160 Ctrl Measures for Commo

IB
I
I
I

B 1-4t4 Version 1.0

__ I

Appendix B1 C3M Protocol Extension

E 4.1.2. Entity types.

This field is Section 6 of [IST 1993]. The following values were appended to this field
by the protocol extension.
Entity types for entity kind "Supply" are given in 6.3.11 of fIST 19931. The following
bold values were appended to this field by the protocol extension.
Kind Dom Count Cat Scat Spec
6 Supply

i0
Unused 0 Unused

6 Personnel
0 Other
1 Dismounted
Infantry
2 Engineers
3 TBD

7 Water

I
I
I
I
U
I

I
I
I
I

B1-45 Version 1.0

I

Appendix BI C31 Protocol Extension

This protocol extension introduced a new entity kind "Control Measure". The

Entity Types for this entity kind are given in the following table.

Kind Domain Country Service Type Measure Enumeration

8 Control Measures
0 Unused m

168 USA

0 Other
I Army l

1 Point

I Contact Point
2 Coord./Control
Point
3 Passage Point
4 Release Point
5 Start Point
6 Reference Point 1

2 LineI

I Phase Line
2 Boundary Line 1Ir

1 Lateral

2 Rear
3 Fire Support
Coordination Line
4 Line of Attack
5 Line of Departure
6 Route Line
7 Security Ops IIScreen2 Guard

S3 Cover

8 Axis of Advance

1

9 Direction of
Attack I
10 Line Departure
is Line Attack2 Area 1
1 Assembly Area

2 Objective
3 Pre-planned Fire
Area
4 No Fire Area
5 Restrictive Fire
Area
6 Obstacles

1iMinefield
2 TBD

B1-46 Version 1.0 I
I

Appendix BI C3I Protocol Extension

4.2. NEw FIELDS

I The values presently defined for this field are as follows:

1 - Self

2 - Cooperative

3 - Non-Cooperative

*4.2.2. When Flag

The values presently defined for this field are as follows:

S1- On Order

2 - When Ready

3 - At Delivery Time

4.2.3. Perception Code

I The values presently defined for this field are as follows: ABCDEFGHI (radix 10)
A - Perception Control Code

0 - Stop sending perceptions
1 - Begin sending perceptions

B - Perception Report Type
0 - Snapshot of perceptions at time of request
1 - Continous, update perceptions until Perception Control of Stop is
received.

*C - Perception Type
1 - Monitor
2 - Control

D - Info Categories (bit specified is set when true)
0 - Perceptions
1 - Communications

E..I - Not Used

4.2.4. ActionRequested

I - The values presently defined for this field are as follows:

1 - Pause

2 - Change Real time multiple

3 - (Re)Start

4 - (Re)Start with new Real time multiple

I
UB1-47 Version 1.0

I

Appendix B1 C3I Protocol Extension

4.2.s. ImpendingAction

The values presently defined for this field are as follows:

1 - Pause

2 - Change Real time multiple

4.2.6. ShapeFla

1 - Point

2 - Line

3 - Horizontal Area I
I
I
I
I
I
I
I
I
I
I
I
I

B1-48 Version 1.0

I

I
I

n APPENDIX B2:

i DIGITAL MESSAGE COMMUNICATIONS

PROTOCOL EXTENSION

I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I

Appendix B2 Digital Message Communications Protocol

1. DIGITAL MESSAGE COMMUNICATIONS PROTOCOL
(DMCP)

Under AIRNET AeroModel & Weapons Model Conversion, the MCC Comanche
Support and Digital Message/Communications Upgrade provides for the use of
existing MCC functions within the AIRNET simulation for Comanche simulators,
and to provide for digital messaging capability between the Fire Support
Element, the Tactical Operations Center and the RAH-66 Comanche simulator(s).

1.1. BASE STANDARD

This was implemented as an extension of both the SIMNET 6.6.1 protocol [BBN,
1991) and the DIS Application Protocol [IEEE, 1993].
The Digital Message/Communications Segment is designed such that the
executable code will be completely compatible with any and all digital message
formats, with such messages and formats being described in separate data files.
These data files will provide the executable with all the information it needs
about the particular message type, including the name and number of the
message, the message structure and the message length.
The MCC Digital Message/Communications Segment is intended to provide the
capability to sen1 and receive digital pre-formatted and free text messages
between the MCC operator stations and Fire Support Element Console (FSEC)
and the Comanche simulator(s).

* 1.2. APPLICABLE DOCUMENTS.

BBN, 1991 Arthw: Pope, Richard L. Schaffer. The SIMNET Network and
Protocols BBN Report Number 7627, June 1991.

IEEE, 1993 1278-1993, Standard for Information Technology, Protocols
for Distributed Interactive Simulation Applications, IEEE,
New York, NY, March 1993

1.3. IMPLEMENTATION HISTORY.

Currently the Comanche Support and Digital Message/Communications
Upgrade to the AIRNET MCC is intended for use at only one site, Fort Rucker,

* Alabama. No provision is made for portability to any other SIMNET facility.
However, the upgrade was designed with portability and reusability in mind.

2. GENERAL REQUIREMENTS

TBS

H B2 -1

I

Appendix B2 Digital Message Communications Protocol I
3. DETAILED REQUIREMENTS

3.1. INTRODUCTION

The preliminary Protocol Data Ur. . for the Digital Message/CommunicationsI
portion of the AIRNET upgrade c. .sists of a specification, and a body. The
specification contains data fields oi the same kinds for each protocol data unit
type, while the body contains that data which is specific to the particular type of
PDU being transmitted.

3.2. REPRESENTATION OF DATA

TBS

II ,
I

I
I
I
I
I
I
I
I
I

B2-2 I

I

Appendix B2 Digital Message Communications Protocol

3.3. BASIC DATA TYPES AND RECORDS

3.3.1. DIS Header

1A DMVC (SIGNAL) PDU: DIS Rev. Date: aa(~dn OO

Head~rAeWCommon (240):
Pmbmveium(l) 2

(I POU Twoe (1) 1A

so (2)

R"* (2 3b tb

Tmdfv2b4 14b Psi.

Lafth (2) WAW 1.7 (IM J Am"

____" -Beg-i-8.nning ofSignal.Data -

poGw(4) _______yenthfilc

Ti. e~ F (-1)

SNTeqeMeee, (1)

AtqC#J (U) IL(Ibwd mwr gw) De2 r~d 3 f~pDO Tye ASIIme.b

eeTOWOeW(6e) 6 wrbm

Pemint,(1) Awe

OWeMCM (0) 0ge 46m)y I iut

SIZEdw O) ISDE & m COMMON BLOC mv24

Twomm 14) s dmmmswq Deo rýGro (DQ Tm JSU w~0

TMUNMOT004) ~ ~ ~ B -3 T o)S."M" .210011M.

ImWA

Appendix B2 Digital Message Commnunications Protocol

3.3.2. SIMNET Header

D C DMC PDU: Header & Rev. Date: midmilamemoi

Common Block foil Simnet
Hdeadr.H~stbrTyp..sIU:

2 ion s
, DU PW0JI(1) O C 3 Jon soComemed

Common (232):I
Si. 0)

0xre~t 4 f ne00W .bti ISM07 GUITI

Unw.evwd (131

5u.on e4 ffifldedl) C L~cu

S .an e p e a m (1) 1 A ~ w 2 O GS iI
U~WW 2 - P S

54* 0) 3 02
___________________4 03

TwaipD 40) Hs(2 IS

En~y S2
7 PO

Tinwc..ii 6) (1 d ewan) 0 -All

zWNW W _ _ _ __W~f 0- Thw-e ga*0802~ w~as

II
F-*qnncy (40 Fe(0""UWWWWm Tioevm m. e"sAJU Type JAM0

L~men (14) is" UT r Tpi

Pt..Ta" (64) (44 Ch.,mq UWI9)

ZwIiTuii 0) WMe. show~ so No

a. _ _ _ _ _ _ IIn

S.*ypeI)I ACE
VOiN"m(2 SPOT

__________________ 3 :CA

we*opeded 4 AECON
in spedKI S AMT

6 ImOV
7 STATUS

A MVl~tES

8 InMI
SIZE OF HEADER & COMMON BLOCK =240

B2-4I

Appendix B2 Digital Message Communications Protocol

3.4. LIST OF PDUS IN PROTOCOL EXTENSION
TBS

3.5. PROTOCOL DATA UNITS FOR PROTOCOL ExrFNSIONS

35.1. DMC: ACK

D C DMC PDU Specific: Rev. Date:

01 Subtype = ACK 11,23..2
00 Variation = Standard
Specific (104):

8..(2)

Sam-dO (4)

Teowwml (1)

i A~a~o~a, silo () m (2)

~i~(2)

I -- ____
�I ____ __ _(2)

Tooi (1) _

oPJ~~ew) (I a T •

TOTAL SIZE = 240 + 104 = 288 Bytes (includes Header & Common Block)

II
I

I-
I
I
I

B2 -5

I

Appendix B2 Digital Message Communications protocol

DC DMC PDU Specific: Re.AMt:

02 Subtype =SPOT som"O/2d oo

00 Variation =Standard

Specific (88):

ThINIM&Wd410) IS-. DYG ToW.

0~m (if) Isdo (5dTh wo)

0 kidEEaWN

I (Sanwo : Sinp

_________Heft__ SNE 4 1
SW " 70 aao S

Speed IP VO
TOT PAL S(2E-208 (S2 Speed (Tndude Hede & om nBlck

3.3 0"C bDTo

03 Subyp =W BDA
00 Vaito = Standard

SDcii (4) DM 0 pcfc e.Dae 10,101"

Ilook"

03~~~~~~ SutpeAM*4"0a Ws

(Soo OT4TooW) 6 AMd
4 TUUC

T(a,400 OS TM)*0

___________________ 7 Aci

Targets 0 No"Mmd
0mwww4 02) 1 0%_______

peraf 2 25%
C-019 (1) 3 60%

____ ___ ___ ___ ___ ___4 ?S%

TOTAL SIZE =240 +40=280 Bytes (includes Header & Common Block)

B2 -6

Appendix B2 Digital Message Communications Protocol

3.5.4. DMC: RECON

3.5.4.1. DMC: RECON GRND RTI D C DMC PDU Specific: 1-60

04 Subtype = RECON S"o' i$"

* 00 Variation = GND ROUTE
Specliic (80): Subtype.GndRoute

kwmmpa (a1) 0 I0 M ESmi

I -
16mN() 2 T)" •I

ChIM r-b(32) (32 03 §0 wn. t 4 C QC

0 e OYmpd
L'arwoe) e KM

A MW_ Kh

3.5.4.2. DMC: RECON AIR RTI

D C DMC PDU Specific: Rev. Date: ,..., .

04 Subtype =RECON "a" "

01 Variation =AIR ROUTE
Specific (80): SubtypeoAirRout.

8mRUDyA~WtP E) o t ENo d
I N"0l NW &ftLMm 2 3ftyer

I oe Ný 3 MW

3 AX• $ P""S"l
Cn ~ m (l ~ omg)4 TOW Art 6 Avenang

5 VA= 7 Afndo"

TOTAL SIZE =240 +80 =320 Bytes (includes Header & Common Block)

I

I
!

I

Appendix B2 Digital Message Communications Protocol

3.5.4.3. DMC: RECON BRIDGE

D C D M C P D U S pecific: Rev. Date: ,m..u.m-p---

04 Subtype = RECON 11/3/2

02 Variation = BRIDGE
Specific (SO): Subtype.Bridge

ON-o0 2 Tam

Ccmaw"IAa (1) - 0 NN(9PAR" 3 ""1

~~25A4a (40"1cwskq 2 1as OUWd 7 Q, O

¶A11 (4i (4 dWMUW 8") A CnW.M A l

N9l(4) 0 dWacggf 541)

(Jedw (4) (4 asueub Val1)

(odO14) 4uriuU

LOSOC~aM (4) (dWU54g '419)

TOTAL SIZE =240 + 80 = 320 Bytes (includes Header & Common Block) 3
3.5.4.4. DMC: RECON LZ/PZ

D C DMC PDU Specific: Rev. Date: ,.s"m' idI

04 Subtype = RECON 1112392 . &.. n

.03 Variation = LZPZ
Specific (80): Subtype.LZPZ

Iyt~a l (1)0 NatEftwsd

(1) 0N4•' Eimtrd 2 I
Lkaod P6) 1Wo N • Nwr

OWN"d 2AD

Ossall) (1v1e eact 4 TOWe Or

t.Jo(?$ (i wal sr OU-Sit (14) (16 da g 01)S "i

Axis (1S) (16QIS alo song~ 4) 9 Othe

TOTAL SIZE = 240 .80 = 320 Bytes (includes Header & Common Block)

,I
II

B2-8 I
I

Appendix B2 Digital Message Communications Protocol

3.5.4.5. DMC:- RECON BP/OI

D C *DMC PDU Specific: Rev. Date: =ono

*04 Subtype =RECON boo a wo"3/92de

04 Variation =BPOP
Specific (80): Subtype.aP..QP

I Nome_ 3___ ___

2 Kq 0 2 :4

commo 3 T onymi * A aw

(Pi s dwomom Nov 4~s To~i - A & Ki

MS (14 dumw aw Sog : ow I 0

TOTAL SIZE = 240 + 80 = 320 Bytes (includes Header & Common Block)I3.5.4.6. DMC: RECON CROSSING

Re. ae: S.ps~~man=..IdD C DM0 PDU Specific: Rev Dae .e~ntwG

04 Subtype =RECON "&of P -demo

* 05 Variation =CROSSING
Specific (80): Subtype.Cro~ssng

8 (&- y46) f4 dwa.w now

admadpAut (4) (dw-clor gu'g

C I s Dpop (40) 14dMWSM

0-ngsoN. (4) ("op o

TOTAL SIZE =240 +80 = 320 Bytes (includes Header & Common Block)

3.5.5. DMC: RECON ARTILLERY

3.5.5.1. DMC:- RECON ARTILLERY REPEAT

D C DMC PDU Seic:Rev. Date:
Specific: 1as05 Subtype =ARTY da woantomdeI 00 Variation =REPEAT

Specific (56): Subtype.Repeat

I~B2 -9

Appendix B2 Digital Message Communications Protocol

3.5.5.2. DMC: RECON ARTILLERY CANCEL
Rev. Date: mm ~8

DC DMC PDU Specific: '.': "--
05 Subtype = ARTY -aw a;'_.._"..

01 Variation = CANCEL
Specific (56): Subtype.Cancel

3.5.5.3. DMC: RECON ARTILLERY CHECK FIRE i

D C DMC PDU Specific: Rev. Dt:i

05 Subtype = ARTY -

02 Variation = CHECK
Specific (56): Subtype.CheckFlm

3.5.5.4. DMC RECON ARTILLERY CNO

D C DMC PDU Specific: Rev. Date:

05 Subtype = ARTY
03 Variation = CNO
Specific (56): Subtype.CNO

wmmiVO (10 (14 amswrnigJ
T"WDMml (to 110 W snmarift

L m

W'em•.Wi(1 3 arm

4 2 R A

3.5.5.5. DM(: RECON ARTILLERY SHIFT

DMC PDU Specific: Re..Dat: ., -

05 Subtype = ARTY
04 Variation =SHIFT
Specific (66): Subtype.Shift

keemmot") 0 m m~•

immidO (10 (Ou

I Rqw d
PniuIAmd(I - M 2 AMOY~

-RUJE(04 3 SW
km,; (7) fie O miniA)

B2(1-10i I
• m |I

Appendix B2 Digital Message Communications Protocol

3.5.5.6. DMC: RECON ARTILLERY NEW MISS

D C DMC PDU Specific: Rev. Date: ,.,-.- 0-,,

I 05 Subtype = ARTY -osaw :,-.m..._,,.

05 Variation = NWMSN
Specific (56): Subtype.NewMlsslon

Ti~s.eOa1 0 as sn,
0 40Elkm

SWS(1) 0 NoN @ 2 V

0 Ndhde d F O
I be 2 A4Fi 30Iw" p) 0 _O_ _ 2 EcnM 3 onmwU SO

I AIX_ ___ _ 4 sum
Fun ,r1 0 I. ERIN" a__A 4__ __ ICa 3 TOT &w

I LOW 3 Cam PmqI 4 Ciediiki

3.5.5.7. DMC: RECON ARTILLERY END OF MISSION

D C DMC PDU Specific: Rev. Date: ,:.s-.wdnot,,pe,,.l

05 Subtype = ARTY 11U,,a2 a-w-qe 9 ew spsca

09 Variation = EOM
Specific (56): Subtype.EndofMiaslon

il0) 0 Naeewmd

I NoI ad 3Sho0ww"M (1) o N2Erf• 2 & 4

IFIFw#Aw11" i "

TOTAL SIZE = 240 +56 = 296 Bytes (includes Header & Common Block)

i
I
I
I

B2-I

Appendix B2 Digital Message Communications Protocol

3.5.5.8. DMQ RECON ARTILLERY MTO

D C DMC PDU Specific: R. Date: G:---"-d--".4

05 Subtype ARTY 6" wor• -- -

06 Variation = MTO
Specific (56): Subtype.MTO

IhmmIO (U) (1Sd/m~wumaa

TagdeO (tl) (tl sdas•

0 hasiv~

} (1)__A (lpm 11 1
UmmAo (4)

3.5.5.9. DMC: RECON ARTILLERY SHOT

- Ia
D C DMC PDU Specific: 11. .e: ,,-.,-,-
05 Subtype = ARTY bum an.......

07 Variation = SHOT
Specific (56): Subtype.ShpatI

3.5.5.10. DMQ RECON ARTILLERY SPLASH

TbaidO (14) (1e ma~mw.,wg1

D C•p DMC PU Spcfc Rev.Dt: aw"

SpIic (56): Sut .Sp

"Labvw(1* 1&(mw """"00I

I
I
I

I

Appendix B2 Digital Message Communications Protocol

3.5.6. DMC: MOVI

D C DMC PDU Specific: Rev.uat: .- I12/16192 as-ms @s"a f

06 Subtype = MOVE o -. -

00 Variation = Standard 3"4 ¢OW IA

Specific (48): ma" T.o Nr
TWIND) 0"11 P14 ursaw savp An"g Al I1w

Tmqwn (1) inAmF 3 13
-F 4 p

v•4rq () .0 Im IlI

Um~d) 2 WAVRd

Zulu TiMe (3) Wolel s qN eb d ofZW 4 O

vwm (0) 0 Ch- Uno

i DTG (16) 0-e DT(I TV"oe

TOTAL SIZE = 240 + 48 = 288 Bytes (includes Header & Common Block)

3.5.7. DMCR STATUS

D C DMC PDU Specific: Rev.Date: .I 07 Subtype = STATUS Wft &.m. M"w

00 Variation = Standard
Specific (16):

FuN (1) In We

iw~m,, (1)

Fo KEqojp (31) ayof 3) 0 NotUmd

I &v1_ _

s•() 3 Gum

IRadui (1) D

RWA-49 (1) 7 Ldam

RqecFWTOe (1) : 0 tLerI TI () 1 AuaO3 UWAmd 0)

TOTAL SIZE = 240 + 16 = 256 Bytec (imcludes Header & Common Block)

I-
I
I
I
I

B2 - 1:3

I

Appendix B2 Digital Message Communications Protocol

3.5.8. DMC: REOUEST

D C DM0 PDU Specific: Rev. Dote: . , -

08 Subtype = REQUEST 11/2U2

00 Variation = Standard
Specific (8):

0 NO Edared 2 Spot
I . .- o - - ' A

35,sP Im/ •Ao a;, 2 l•f

TOAL SIZE = 240 + 8 =248 Bytes (includes Header & Common Block)

3.5.9. DMC: NBC

3.5.9.1. DMC: NBC -1 I
D C DMC PDU Specific: q. Date:

09 Subtype =NBC ION A.__ n.,

00 Variation = NBC-1
Specflic (64): Subtype.NBC__

D eIIN (1) 0 IM & a 2 M 3 -I Unhmed3 Itat OImy*Am (4) in- 2 bId

E F 2 4 Flt 4 , ,, • I P•eI

a.wg ,. (1,) (1-owtow) 3, l4lM 5 b Vedlum

____d 0) a

SWOTG 110) 0S DTG T" ,
&WDTa (10) 000eDTO TOO)t

3.5.9.2. DMC NBC-4

D C DMC PDU Specific: Rev. DM*:-

09 Subtype = NBC 6"a2392 d.. .eed

03 Variation = NBC-4
Specific (64): Subtype.NBC_2

ONO"-m (1)0 eStmdI unksulI
ImTywe (1) 0 Not Erdemd 2 hW

No E Notl e 2 Lbswa
Oceiosyo (1) 0 med u mee 3 ,eft * am,

Om40bem l) -- O tmed• 4 2 Any 4 Air 4 *pee
C____M (4) _ _ dog*" __M __ 3 _o__ 5 Gnd 7 I

_____ _____ ____2 tONIFI 4 pW"Gd 7 a
•0•r(15 (I dutear) 3 K M it,

e Ine - Inw

I
B2 - 14

I

3Appendix B2 Digital Message Communications Protocol

3.5.9.3. DMC:- NBC-5

D C DMC PDU Specific: Rv sI 09 Subtyp =NBC 12

04 Variation =NBC-5
IPectle ("4): SubwpMe-18aw.

-- mos.~

= i~ swam it__

"* OASubtye =uMlw IJ aof

I~ ~~~ lam_____

- ~oftemuwl

0=e' 01 *t

00_ 1'4* am*" two

01~3~~~~~~% TOA IEM20*W*SS ye(~ ~ vw

malo
snop

B2 -15

Appendix B2 Digital Message Communications ProtocolI

3.5,11. DMQ- PIREP

D C DMC PDU Specific: Rtv. Det:oW a

o B Subtype =PIREP NoI Goo"sen~
00 Variation =Standard 1to"

-N 40110
- IS On

1 0." ,'

No ~ ~ v ne a
___ __ __ __ __ __ __ 1 ~ 4 wa

_________________ " S"

~jow ill
33A1 DMC461 Won

aammomeamsmuam

D f CNMOPUSecfc

0 C Subtype =DNAV

00 Variation =Standard

iS~eime ft)

awww"01I
OW=

TOTAL SIZE * 240 0 20 Olin &wivhdes Meedm a Cowvne Me%

B2-16

3 Appendix B2 Digital Message Communications Protocol

3.5.m3. DMC: FREE TEXT

D C DMC PDU Specific: R". -a,: ,:.-----.-.-'.-

0 D Subtype =FREE TEXT b 'v 0" ---- '
00 Variation = Standard

I Specilt (254):

I I

TOTAL SIZE a 240 * 254a 496 ftes (v%*Wos Heue & CAmon eock)

3 4. ENUMERATED AND BIT ENCODED VALUES FOR USE
WITH DIGITAL MESSAGE/COMMUNICATIONS PROTOCOL
(DMCP)

3 4.1. UPDATED FIELDS

See specifications in Section 3

4.2. NEw FILDS

See specifications in Section 3

IB
I
I
I

I
I
I
I

B2 -17I

I

APPENDIX C: SIMNET PROTOCOL EXTENSIONS

I
Component Protocol Extensions

I Smart Mutes Si*ulation Protocol Extson3 2 Data Collection Protocol Extwsion

3 Missile Server Protocol Extension
4 CVCC Protocol Extension
I 5 Mul!Rad Protocol Extension
6 Persistent Object Protocol
7 VMS Protocol Extension

I
,I
I
I
I
I
I
I
I
I
I
I

i Appendix C1 Smart Mines Simulation Protocol Extension

I
APPENDIX Cl:

I SMART MINEs SIMULATION PROTOCOL EXTENSION

I

I
I
I
I
I
I
i
I
I
I
I

I Appendix C1 Smart Mines Simulation Protocol Extension

1. Smart Minefield Simulator (SMS) Protocol Extension

This appendix describes the protocol extension developed to support of the
Smart Minefield Simulator (SMS) Version 1.6. The SMS simulator models four
kinds of mines, including the generic conventional anti-tank mine, the Textron
anti-tank wide-area mine (WAM), the Textron anti-helicopter mine (AHMT), and

I the Ferranti anti-helicopter mine (AHM-F).

The SMS runs on a Masscomp computer at a 10 Hz frame rate. Most user-
interface functions are supported on a PC-done, which communicates with the
SMS via the SMS protocol extension.

1.1. Base Standard

The SMS protocol is an extension to the SIMNET 6.6.1 protocol as documented in
iBBN 1991). The primary purpose of the protocol is to allow the SM user
interface to communicate with the SM simulator. No other simulation
applications issue or respond to the SMS protocol. The SMS communicates with
other simulations using the core SIMNET protocol.

The SMS protocol is a test specific protocol and no plans have been made to
integrate this protocol into the base SIMNET standard.

I 1.2. Applicable documents.

The following documents are referenced in this protocol extension:
BBN 1991 Pope, Arthur R.; Schtafer, Richard L SIMNET Networks and
Protocols, BBN Systems and Technologies, BBN-7627, June 1991.

i 1.3. Implementation History.

The Smart Minefield Simulation protocol was developed to support the SMS
study. This ADST delivery order developed the software to replicate a smart
minefield according to functional specifications developed by IDA (in
consultation with Loral); the software supported the replication of the smart
minefield and associated weapons was be hosted on existing BDS-D hardware.
This was a small scale effort (follow-on to WAMS) to implement the smart mines
on the BDS-D battlefield.

The SMS study conducted tests using Smart Mines Simulator and Semi-
Automated Forces only. The SM Simulator was developed for the SMS study
and is not currently in wide spread use.

2. General Requirements

2.1. Introduction

The SMS protocol extensions purpose is to allow the SM user interface to
communicate with the SM simulator. No other simulation applications issue or

CI-I
C!-

I

Appendix C1 Smart Mines Simulation Protocol Extension

respond to the SMS protocol. The SMS protocol, as recorded by the data logger,
is also used for After Action Review (AAR) and analysis purposes.

2.1.1. Terminology

This paragraph is intentionally left blank.

2,1.2. Key Concepts

"This paragraph is intentionally left blank

2.1.3. Information common to all FDUs in this extension.

The SMS protocol is implemented as a SIMNET sub-protocol. The SMS protocol
has been assigned a protocol number and protocol version so that it can be
discriminated from other sub-protocols. i
2.2. PDUs for SMS Protocol Extension

2.2.1. SMS Emplacement PDU.

The SMS Emplacement PDU shall be used to communicate the emplacement of a
mine field.

ZZ1.1. Information Contained in the SMS Emplacement PDU I
The SMS Emplacement PDU contains the following information:

(1) PDU Header

(2) Emplacement method of minefield

(3) Numba of points necessary to deftne the emplacement
(4) Number of mines to be laid in the mine field.

(5) Width, in meters, of the minefield.

(6) The type of Mine to be emplaced.
(7) Density, in min"e m02. of emplaced mines (alternative to

quantity specificatio)

(8) Mine field identifier.
(9) tUTM locations as prescribed by emplacement method and number

of points in line.

221.2 1,suc of the SMS Emplacement PDU

The SMS emplacement PDU is issued by the SM user interface application to
crate a minefield with the given parameters.

2.2.1.3. Receipt of the SMS EmplaF c nt PDE

Upon receipt of the SMS Emplacement PDU the SM Simulator will create a
minefield with the given parameter,.

2-2.2 SMS Control FDU.

Cl-2 I

Appendix C1 Smart Mines Simulation Protocol Extension

The SMS Control PDU shall be used to communicate changes in state of
minefields.

22.2.1. Information Contained in the SMS Control PDJ

The SMS Control PDU contains the following information:

(1) PDU Header

(2) Control Type specifies what target SMS component is to be
controlled.

(3) Index specifies the identifier of the target SMS component.

(4) Value specifies the new state of the target SMS component.

2.2.2.2. Issuance of the SMS Control PDU

The SMS Control PDU is issued by the SM user interface to change the state of a
minefield on the SMS.

2.2.2.3. Receipt of the SMS Control PDU
Upon receipt of the SMS Control PDU the SMS will change the state of the
indicated minefield according to the PDU parameters.

2.2.3. SMS Status PDU.

The SMS Status PDU shall be used to communicate the status of the SMS to the
j SM user interface.

2,2,3. I'formation Contaied in the SMS Status PDU

The SMS Status PDU contains the following in!ormation:

(I) PDU Header

(2) Vehicle ID

(3) Status Type

(4) Field Status. or
a) Field identifer

b) Field state

"c) Field location

j d) Quanty of mines in field

(4) Sensor Status

a) Sensor state

b) Field identifer

c) Sensor identifier

d) Sensor type

I
CI-3

I

Appendix CI Smart Mines Simulation Protocol Extension

e) Sensor location

2.23.2. Issuance of the SMS Status PDU

A SMS Status PDU describing a field is issued whenever the contents of the field
change, whenever the field's state is changed by the user, and every 60 seconds.
A SMS Status PDU describing a sensor is issued whenever the sensor's state
changes.

2.23.3. Receipt of the SMS Status PDU

Upon receipt of the SMS Status PDU the SM user interface will update its world

3. Detailed Requirements

3.1. Introduction

This section defines the PDUs and their fields.

3.2. Representation of Data

This protocol extension does not introduce any new types of data repres- "ation.

3.3. Baskc Data Types and Records

3.3.1. PDU Header I
The PDU header shall be the first part of each SMS protocol PDU. This header
contains the following fields:

1) protocol version number

2) protocol data unit type

3) exeras idezthca on.

See SIMNET Network and Protocols for a complete description of the PDUm
Header. (BBN 19911

'.4. List of PDUs in Protocol Extension

This SMS protocol extension is compnsed of the following PDUs:

1) SMS Emplacemwnt POU 3
2) SMS Control PDU.

3) SMS Status PDU 3

I
I

I
• m m i i i i m m m i

Appendix C1 Smart Mines Simulation Protocol Extension

3.5. Protocol Data Units for the SMS Protocol Extensions

3.5.1. SMS Emplacement PDU Information

The emplacement of a minefield shall be communicated by issuing a SMS
Emplacement PDU. The SMS Emplacement PDU shall contain the following
fields:

(1) PDU Header - See 3.3.1.

(2) Emplacement Method - This field shall describe how the minefield
should be emplaced. The emplacement method determines the
number of UTMs required to Elefine the minefield and if a width is
required. See 4.2.1.

(3) Points in line - If the Emplacement Method is "InLine" or "lnArea"
then this field is required and specifies the number of UTMs that
are needed to define this emplacement. This field cannot be greater
than 10 and will be set to 0 if not required.

(4) Quantity - This field will contain the number of mines the mine
field is to contain.

(5) Width - If the Emplacement Method is "InLine then this field is the
width, in meters, of the minefield otherwise this field is set to 0.

(6) Mine Type - This field shall describe the type of mines the mine
field should contain- See 4-2.

(7) Density - An alternative method of dehng the number of mines to
be emplaced is to specify the desired density in mines per square
kilometer. This field is used if the quantity is zero.

(8) Field - This field shall uniquely identify the mine field to be
emplaced

(9) UTM . This field shall specify a LUTM locations used to define the
locaion of the mine fwld. The number of locations is dependent on
the emplacement method, and possibly on the number of points in
line. For individual and rectangle. at is one and twoo respectvely,
For line and area. it is the pomnts.min-hne value

II

Appendix CI Smart Mines Simulation Protocol Extension

The SMS Emplacement PDU is represented in Fig 3-1.

Field
Size SMS Emplacement PDU

Protocol Version 8 bit char

64 PDU PDU Kind 8 bit char I
Header Exercise 8 bit char

Padding 40 bits - Unused I
8 Emplacement Method 8 bit enumerated

8 Points in line 8 bit integer

16 Quantity 16 bit integer

16 Width 16 bit integer

16 Mine Type 16 bit enumerated

32 Density 32 bit integer

32 Field 32 bit integer

Varies UrTM(s) array of 16 char

n x 128

Ficure 3-1. SMS Emplacement PDU.

3.5.2. SMS Control PDU Information

The Control of a minefield sh '1 be communicated by issuing a SMS Control
PDU, The SMS Control PDU s0.-. contain the following fields:

(1) PDU Header - See 3.3.1.

(2) Control Type - This field specifies what target SMS component is to
be controlled. See 4.2-3.

(3) Index - This field specifies the identifier of the target SMS
component. i

(4) Value - This field specifies the new state of the target SMS
component. See 4.2.4.

I
II
I

CI-6 I

Appendix C1 Smart Mines Simulation Protocol Extension

The SMS Control PDU is represented in Fig 3-2.

Field
Size SMS Control PDU(bits)

Protocol Version 8 bit char

64 PDU PDU Kind 8 bit char

Header Exercise 8 bit char

Padding 40 bits - Unused

Control Type 32 bit enumerated

8 Index 32 bit integer

16 Value 32 bit enumerated

Figure 3-2. SMS Control PDU.

3.5.3. SMS Status PDU Information

The SMS Status PDU shall be used to communicate the status of the SMS mine
fields and sensors to the SM user interface. The SMS Status PDU shall contain
the following fields:

(1) PDU Header - See 3.3.1.

(2) Vehicle ID - This field contains the vehicle id of the SMS simulation.

(3) Status Type - This field specifies the kind of object being described.
See 4.2.3.

(4) Field Status or Sensor Status - If the PDU is reporting on the status
of a mine field the following fields will be required:

a) Field - This field is the unique identifier for the mine field.

b) State - This field describes the current status of the mine
field. See 4.2.5.

c) Lower Left U`TM - This field defines the location of a point
south and west of all mines in the field.

d) Upper Right UTM - This field defines a point north and east
of all mines in the field.

e) Quantity[NumMineTypes] - This field specifies the number
of each kind of mine in the field.

If the PDU is reporting on the status of a sensor the following fields
will be required:

a) State - This field describes the current state of the sensor. See
4.2.6.

C1-7

Appendix CI Smart Mines Simulation Protocol Extension

b) Field - This field is the field identifier of the sensor's
minefield.

c) Index - This field is the unique identifier for the sensor.

d) Type- - This field is the type of sensor. See 4.2.7

e) Location - This field is the location of the sensor on the
battlefield in world coordinates.

The SMS Status PDU is represented in Fig 3-3.

Fie.d
Size SMS Status PDU
(bits)

Protocol Version 8 bit char

64 PDU PDU Kind 8 bit char

Header Exercise 8 bit char .

Padding 40 bits - Unused

16 VehicleID 16 bit integer

16 Status Type 16 bit integer

Field 32 bit integer

if Field Field State 16 bit integer

Status Field Status Lower Left UTM 16 -8 bit char

304+ Status UpperRightUTM 16-8bitchar

n x16 Quantity[nl 16 bit integer

OR State 8 bit ca

if Sensor Sensor Field 8 bit char

Status Status Sensor Index 16 bit integer

160 Status Type 8 bit char

padding, 24 bit unused

Location 3 - 32 bit Integers

Figure 3-3. SMS Status PDU. I
I
I
I

C1-8

[

Appendix C1 Smart Mines Simulation Protocol Extension

1 4. Enumerated and Bit Encoded Values for Use with the SMS Protocol
Extension

The material for in this section should be suitable for insertion in the
"Enumerated and Bit Encoded Values for Use with Protocols for Distributed
Interactive Simulation Applications" document that accompanies the base
standard (see section 1.1). If this is a SIMNET protocol extension, the information
should still be in this format.

3 4.1. Updated Fields

4.1.1. Protocol Number

To distinguish the SMS protocol from other protocols using the association
sublayer, the SMS protocol is assigned a unique association sublayer user
protocol number [BBN 1991, p801. This number is 149. Protocol Number is
discussed Section 7.2 of IBBN 1991]

Value Protocol Version Meaning

149 smsProtocol Number Current protocol number

4.1.2. Protocol Version

The following protocol version values have been defined for the SMS protocol.

IVal Protol Ve

I smsProtocolVersionSep92 Current protocol Version

4.1.3. PDU Kind

The following values are defined for this field by the protocol extension.

* Field Value ind

I SMS Emplacement PDU

2 SMSControl PDU

3 SMS Status PDU

CI-9I

Appendix C1 Smart Mines Simulation Protocol Extension

4.2. New Fields

4.2.1. Emplacement Method

This field is referenced by the SMS Emplacement PDU. See 3.5.1.

Fild Emplacement
Value Met. od Meaning

0 Individual Single Mine - one UTM is defined

1 InRectangle Emplace mines in a rectangle area
defined by two U&Ms

2 InLine Emplace mines along a line defined
by up to 10 UTMs are defined plus awidth

3 InArea Emplace mines in an area defined by

up to 10 UTMs

4.2.2. Mine Type

This field is referenced by the SMS Emplacement PDU. See 3.5.1.

Value MinT

1 Conventional generic anti-tank mine l

2 WAM Textron anti-tank wide-area mine

3 AHM-T Textron anti-helicopter mine I
4 AHM-F Ferranti anti-helicopter mine

4.2.3. Control/Status Type

This field is referenced by the SMS Control PDU, see 3.5.2, and the SMS Status
PDU, see 3.5.3. U

Value Control I=i I
I Field NA

2 Mine NA

3 Debug NA

I
CI-IO

I

Appendix CI Smart Mines Simulation Protocol Extension

4.2.4. Value

This field is referenced by the SMS Control PDU. See 3.5.2.

Field
Value Value Maning

0 Off NA

I On NA

2 Detonate NA

3 Clear NA

4.2.5. Mine Field State

This field is referenced by the SMS Status PDU, mine field variant. See 3.5.3.
* Fie"Id'''

Value Status Type Meanng

1 0 Off Object is off

1 On Object is on

2 Track Mine Field is in tracking state

3 Detect Mine Field is in detection state

4.2.6. Sensor State

This field is referenced by the SMS Status PDU, sensor variant. See 3.53.

Va Status Tyipe Meaning

0 Off Object is off

I On Objectison

2 Close Sensor is in close state

3 Tracking Sensor is in tracking state

4 Detection Sensor is in detection state

0-11

Appendix CI Smart Mines Simulation Protocol Extension

4.2.7. Sensor Type

This field is referenced by the SMS Status PDU, sensor variant. See 3.5.3. I
Field

Value Stats Type Mea~nin

0 Proximity Sensor NA

1 WAM Sensor NA

2 AHMF Sensor NA

3 AHMT Sensor NA

I
I '

I

I

U
I,I
,I
I

I

Appendix C2 Data Collection Protocol Extension

DATA COLLECTION PROTOCOL EXTENSIONS

I Hollis Experiment

In support of the Hollis Experiment, enhancement were made to the data
collection protocol. These changes allowed the simulators to more accurately
"report on the acquisition process.

* WOSAI
For the Line of Sight Anti Tank simulator the following experiment specific
PDUs were add to the Data Collection Protocol.

* SPLosatSiatusVariant

• SP_LosaEAidedCueingVariant

* SP._LosatAidedScanVariant

* SP_-LosaLAutoTrackVaniant

* SPLosatRangeVariant

I

I
I
I
I
I.
I
I
I
I

c22-1I

I I I II I

I
I

i APPENDIDX

i DATA COLLECTION PROTOCOL EXTENSIONS

I
I
i
i

III'
I
I
I
i
i
I

I !imi

iAPPENDIX C3: MISSILE SERVER PROTOCOL

I
I
U
II,
I
I

I
I
I
I
I

Appendix C3 Missile Server Protocol Extension

MISSILE SERVER PROTOCOL.
In support of the Air to Air Combat II (ATAC IH) Delivery Order, a Missile Server
was added to the network to allow firing Hellfire missiles with a remote
designator. Prior to this extension, missile flyout was limited by the 7 km range
limitation on RWA devices. The Missile Server handles missile flyout and
enhances intervisibility calculations. These enhancement implemented the
Missile Server Protocol.

The following figure is a notional representation of the PDUs that were
developed and how they are used by the hosts.

I Figure C3-1. ATACII Missile Server Protocol.

I
I

1,I

I

I
I

C3- 1I

S. . .. i - i i i i i i ii i

APPENDIX C4: CVCC PROTOCOL EXTENSION

I
I
I
I
I
I

I

I
I
I
U
I
I

Appendix C5 MultiRad Protocol Extensions

Appemix CS: MuLTMAD PROTOCOL EXTENSIONS

This appendix contains the attachment "SDWEr 6.6.1+ Network Protocols For
The TRUE and WARBREAM Programs, Appendix C5, Attachnunt V

3 Appendix C5 - Attachment I MultiRad Protocol Extensions

I
U

I SIMNET 6.6.1+
NETWORK PROTOCOLS

FOR THE
TRUE & WAR BREAKER

PROGRAMS
I
I
3 1 December 1992

Document No. AL0692-009 Rev. E

Prepared for:
Air Force Human Resources Laboratory

3 Williams Air Force Base, AZ

I Prepared by:

L-RAL
C

I
I
I'

C35-I

I

Appendix C5 - Attachment I LORAL MuIliRad Protocol Extensionsi

AL0692-009 Rev. E 1 December 1992 I

SIMNET 6.6.1+
NETWORK PROTOCOLS

FOR THE

TRUE & WAR BREAKER
PROGRAMS I

I

REVISION HISTORY 1
REVISION DATE COMMENT 1

Rev. N/C 2 Aoril 1992 Update

"Rev. A 14 Avril 1992 U Update
Rev. 8 22 June 1992 T- Uodate
Rev. C 8 September 1992 Added Appenix8 I

& BBN Guises to
,__ _ __ , .Aooendix A I

Rev. D 22 October 1992 Added SA-2 & SA-3
Missile Guises to

L Ao..endix A. page A-8

Rev. E 1 December 1992 Revised Radar &
Emitter PDUsI

_ _.. ... __.1.___on Pages 16 - 20 I
_ _ _ _ _ _ __, ____ I

I
-ii- C 2i

I

Appendix C5 - Attachment I *PL_ MulbRad Protocol Extensios

AL0692-009 Rev. E 1 December 1992I

I SIMNET 6.6.1+
NETWORK PROTOCOLS

I FOR THE

TRUE & WAR BREAKER
PROGRAMS

I

I TABLE OF CONTENTS

1.0 Introduction ... 12.0 Protocol Data Units . .. 1
2.1 Actvate Request PDU .. 1

I 2.2 Activate Response POU .. 4
2.3 Deactivate Request PDU ... 6
2.4 Vehicle Appearance POU ... 7

S2.5 Fire P O U .. 1 0
2.6 Impact, POU 13
2.7 Radar PDU ... 16
2.8 Emitter POU 1 9
2.9 Fr ezP POUF. ... 2 1

APPEN D IX A ... A 1-8
APPENDIX B .. B 1

IC
I
I
I
S-HIi-

C:5-3I

Appendix C5 - Attachment I ORAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

1.0 Introduction I
This paper identifies the protocols which will be used for the TRUE and WAR BREAKEF I
Programs. It includes both SIMNET 6.6.1 protocols and extensions to them. U

2.0 Protocol Data Units

2.1 Activate Request PDU

One network device may prompt another to begin simulating a vehicle through a activate
request. The Activate Request PDU includes the following data:

FIELD SIZE ACTIVATE REQUEST PDU FIELDS

8 PROTOCOL 8-bit unsigned integer
VERSION

8 POU TYPE 8-bit unsigned Integer

8 EXERCISE io 8-bit unsigned integer

40 PADOING 40-bt unsigned Integer B

8 ACTIVATE REASON 8-Wet unsigned Integer

8 VEHICLE CLASS 8-bit unsigned integer --

Site - 16-bit unsigned Integer
48 VEHICLE I0 Host - 16-bit unsigned integer i

Vehcie- 16-bit unsigned integer

O A Forme ID- 8-t.t unsigned integer
ORGANIZATIONAL Organizaton Type - 8-bit unsigned integer

Urit Identifier- 18 - 8-bit unsigned integers j

S MARONG Charucter Set -8-bit integer
TeA -118- Sc h--ers I

64 VEHICLE GUISES Oisdnguis•ihed -32-b unsigned integer
cOther - 32-bit unsigned integer

32 SIMULATED TIME 32-bit unsigned integer

I

-1-I

Appendix C5 - Attachment I LORAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

FIELD SIZE ACTIVATE REQUEST POU CONTINUED

128 TERRAIN Terrain Name - 14 - 8-bit caracters1 DATABASE ID Terrain Version - 16-bit unsigned integer

8 BATTLE SCHEME 8-bit unsigned integer

1 ON SURFACE 1-bit unsigned integer

23 PADDING 23-bUt integer

Vehicle Type - 32-bit unsigned integer

Odometer. 32-bit floating point

Age - 8-bit unsigned integer

Unused - 24-bits

Failures (Vehicle Subsystems) - 416-bits

960 VEHICLE Status Category - 16-bit unsigned integer

STATUS Padding - 16-bit integer

Engine Power -8-bit unsigned integer Genenc

Battery Voltage - 24-bit unsigned integer Status
Type - 32-bit unsigned intege Category

Munition _(NC)

Record (61 Ouantity -32-bit floating pointlI

.. LOCATION X - 64-bit floating point

192 (WORLD y - 64-bit floating point
COORDINATES) z - 64-bit floating point

SIMPLE Yaw - 32-bt BAM
64 VEHICLE

DATA (AC) Padding - 32-bit Integer

x - 32-bit floating point
96 VELOCITY y - 32-bit floating point

z - 32-bit floating point

1 FREEZE STATE 1-bit unsigned integer 6

31 PADDING 31-bit unsigned integer

32 VLVIS 32-bit floating point

I
C5-5

* -2-

Appendix C5 - Attachment I LMRAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

FIELD SIZE ACTIVATE REQUEST PDU CONTINUED
(bits)

8 SKY COLOR 8 - bit unsigned integer
B

24 PADDING 24 - bit Integer

32 FUEL QUANTITY 32-bit floating point

16 RADIO CHANNEL 16-bit unsigned Integer

16 MISSION t 16-bit unsigned integer I
Lat - 32-bit floating point

WAYPOINTS Lon - 32-bit floating point16161 Alt - 32-bit floating point

Total Activate Request PDU Size - 3648 bits lB
Simulation PDU header information 1

PROTOCOL VERSION SIMNET protocol version used in the variant portion of the
PDU

PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)

Activate Request Variant
ACTIVATE REASON Reason to activate the vehicle

0 Activate reason other 1
1 Exercise start
2 Exercise restart
3 Vehicle reconstitution
4 Towing arrival

VEHICLE CLASS Class for number of independently moveable pans for
RVA 1

0 Vehicle class irrelevant
1 Vehicle class static
2 Vehicle class simple
3 Vehicle class tank

VEHICLE ID Vehicle identification
Simulation address Site

Host
Vehicle

ORGANIZATIONAL UNIT Organizational hierarchy (not currently used)
MARKING Character string of vehicle markings
VEHICLE GUISES

Distinguished As seen by blue team C5-6

-3- I

Appendix C5 - Attachment I LRtAL MultiRad Protocol Extensions

i AL0692-009 Rev. E 1 December 1992

Other As seen by other teams
Bit field

Domain 3
Environment 3
Class 3
Class 3
Country 6
Series 6
Model 6
Function 5

SIMULATED TIME Time being simulated
TERRAIN DATABASE ID Database being used
BATTLE SCHEME Identifies how force ID's and guises are being used

0 Battle scheme other
1 Battle scheme absolute (does not use guises)
2 Battle scheme relative (uses guises)

ON SURFACE Indicates if vehicle is on the surface of the database or in
* flight

VEHICLE STATUS Contains status of vehicle. The only field currently
used is munitions.

LOCATION Location in world coordinates (meters)
VEHICLE DATA - YAW Initial rotation of vehicle (BAM)
VELOCITY Initial velocity (meters per second)
FREEZE STATE Initial freeze mode

0 Unfreeze
1 Freeze

VLSVIS Visibility in visible light (meters)
SKY COLOR Simulated sky color
FUEL QUANTITY Initial fuel (pounds)
RADIO CHANNEL Radio channel
MISSION NUMBER Number of mission for initialization
WAYPOINTS Lat, Ion and alt of 16 waypoints

2.2 Activate Response PDU

I - A network device that correctly receives an Activate Request must immediately respond by
returning an Activate Response. The Activate Response includes the following data:I

I

I
C5-7I -4-

Appendix C5 - Attachment i LORAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

FIELD SIZEI
(bits)E ACTIVATE RESPONSE PDU FIELDS

8 PROTOCOL 8-bit unsigned integer 1
VERSION

PDU TYPE 8-bit unsigned integer I
8 EXERCISE ID 8-bit unsigned integer
40 PADDING 40-bit unsigned integer B

40 B

Site - 16-bit unsigned Integer

48 VEHICLE I0 Host - 16-bit unsigned Integer
Vehicle - 16-bit unsigned integer

8 RESULT 8-bit unsigned integer

8 1 PADDING 8-bit unsigned IntegerI

16 TIME UMIT 16-bit unsigned integer

16 PADDING 16-bit integer

32 PADDING 32-bit integer

Total Activate Response PDU Size - 192 bits

Simulation PDU header information
PROTOCOL VERSION SIMNET protocol version used in the variant portion of th 1

PDU
PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple I

exercises on network)

Activate response variant 1
VEHICLE ID Vehicle identification

Simulation address SiteHost 1
Vehicle

REASON
0 Activate request accepted 1
1 Invalid activation parameter
2 Unexpected activate reason
3 Invalid vehicle identifier I
4 Terrain database unavailable

TIME LIMIT Not currently used CS l

' -llil IllCII Ii

Appendix C5 - Attachment I LCOR L MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992I
2.3 Deactivate Request PDU

A network device may withdraw its own vehicles from an exercise at any time, or it may be
requested by another simulator to withdraw. In either case, the withdrawal of the vehicle is
announced using a Deactivation.

I RELD SIZE
(bits) DEACTIVATE REQUEST PDU FIELDS

SPROTOCOL 8-bit unsigned integerVERSION

a PDU TYPE 8-bit unsigned integer

8 EXERCISE ID 8-bit unsigned integer

I 40 PADDING 40-bit unsigned Integer j B

4 Site - 16-bit unsigned integer

48 VEHICLE ID Host - 16-bit unsigned integer
Vehile - 16-bit unsigned integer

8 REASON 8-bit unsigned integer

S8 PADDING 8-bit unsigned integer

32 TIME STAMP 32-bit unsigned integer

Total Deactivate Request PDU Size = 160 bits B

I Simulation PDU header information
PROTOCOL VERSION SIMNET protocol version used in the variant portion of the

* PDU
PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)

Deactivate request variant
VEHICLE ID Vehicle identification

Simulation address Site
HostVehicle

REASON Reason for deactivation
0 Deactivate reason other
1 Exercise end

IC5-9
-6-

Appendix C5 - Attachment 1 L MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

2 Vehicle withdrawn I
3 Vehicle destroyed
4 Towing departure 1

TIME STAMP 'Time of PDU issuance

2.4 Vehicle Appearance POU

A simulator/network device periodically reports information about a vehicle it simulates s
that other devices on the network may depict that vehicle. A network device will issue a ne 3
Vehicle Appearance for a vehicle whenever the discrepancy between the vehicle's actu
appearance and its dead reckoned appearance exceeds one of the defined thresholds.
will also issue a new Vehicle Appearance if 5 seconds have elapsed since its la U
transmittal. A Vehicle Appearance Includes the following data: I

FIELD SIZ VEHICLE APPEARANCE PDU FIELDS
(bits)
8 PROTOCOL 8-bit unsigned integer

VERSION I
8 PoU TYPE 8-bit unsigned Integer

8 EXERCISE ID 8-bit unsigned integer 3
40 PADDING 40-bit unsigned integer JB

Site - 16-bit unsigned Integer

48 VEHICLE ID Host - 16-bit unsigned integer

Vehicle - 16-bit unsigned Integer

8 VEHICLE CLASS 8-bit unsigned Integer I
8 FORCE ID 8-bit unsigned integer

64 Distinguished - 32-bit unsigned integer

64 jVEHICLE GUISES other - 32-bit unsigned Integer J

C5-I10
-7- I

Appendix C5 - Attachment 1 L• RAL MultiRad Protocol Extensions
&'Sodom -j .

AL0692-009 Rev. E 1 December 1992

FIELD SIZE
(bits) VEHICLE APPEARANCE POU CONTINUED

LOCATION X- 64-bit floating point

192 (WORLD y - 64-bit floating point
COORDINATES) z - 64-bit floating point

288 ROTATION MATRIX 9 - 32-bit floating points

32 APPEARANCE__ 32-bit unsigned integer

96 I MARKING Character Set - 8-bit integer
Text - 11 -8-bit characters

TIME STAMP 32-bit unsigned integerI
32 CAPABILITIES. 32-bit unsigned integer

16 j ENGINE SPEED 16-bit unsigned Integer

1 STATIONARY 1 -bit unsigned integer

7O PADDINGz 7-bit integer

8 REASON I8-bit unsigned integer

LINEAR x - 32-bit floating point
96 AVELOCITY y - 32-bit floating point S

VECTOR z - 32-bit floating point

32 PADDING 32-bit unsigned integer Vehicle

LINEAR x - 32-bit floating point I Class
96 ACCEL. y - 32-bi floating point Simple

VECTOR Fz -32-bit floating point

ANGULAR pitch rate - 32-bit floating point

I 96 VELOCITY roll rate - 32-bit floating point
VECTOR

32yaw
rate - 32-bi t floating point

POSITION 32-bit*floating point

32 FUEL QUANTITY 32-bit floating point

Total Vehicle Appearance POU Size w 1280 bits
Simulation PDU header information

C5-11
* -8-

Appendix C5 - Attachment I l.O~AL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992 I
PROTOCOL VERSION SIMNET protocol version used in the variant portion of thI

PDU
PDU TYPE PDU type to follow in the variant portion of the packet I
EXERCISE ID Exercise generating PDU (important when multiple

Vehicle Appearance variant exercises on network)

VEHICLE ID Vehicle identification
Simulation address Site

Host
Vehicle

VEHICLE CLASS Class for number of independently moveable parts for •
RVA

0 Vehicle class irrelevant
I Vehicle class static
2 Vehicle class simple
3 Vehicle class tank

FORCE Ir' Force identifier
Force ID irrelevant

1 Distinguished force ID
2 Other force ID
3 Observer force ID
4 Target force ID

VEHICLE GUISES
Distinguished As seen by blue team
Other As seen by other teams
Bit field I

Domain 3
Environment 3
Class 3
Country 6
Series 6
Model 6
Function 5

LOCATION Location in world coordinates (meters)
ROTATION MATRIX 3x3 rotation matrix for vehicle orientation
APPEARANCE Bit field

BIT PURPOSE I
0 Vehicle destroyed (1 =true) •
1 Vehicle smoke plume (1=true)
2 Vehicle flaming (1=true)
3-4 Vehicle dust cloud

0 No dust cloud I
1 Small dust cloud
2 Medium dust cloud I
3 Large dust cloud l

5 Vehicle mobility disabled (1=true)
6 Vehicle fire power disabled I

C5-12 U

-9- I

Appendix C5 - Attachment 1 ILlRl l MultiRad Protocol Extensions

i AL0692-009 Rev. E 1 December 1992

7 Vehicle communications disabled
8 Vehicle shaded (1 =vehicle in shadow)
30 Vehicle TOW launcher up
31 Vehicle engine smoke

MARKING Character string of vehicle markings
TIME STAMP Time PDU was Issued
CAPABILITIES Capabilities of the vehicle (bit field)
ENGINE SPEED Engine speed (Revolutions per second)
STATIONARY Flag variable
REASON Reason for issuing PDU
LINEAR VELOCITY VECTOR Velocity vector in world coordinates (mis)
LINEAR ACCELERATION Acceleration vector (m/s2)
ANGULAR VELOCITY Angular velocity vector (radls)
THROTTLE POSITION Engine throttle position
FUEL QUANTITY Pounds of fuel remaining

2.5 Fire PDU

A Fire describes the firing of a shell, a burst of machine gun fire, or a missile. It is
issued by the firing vehicle simulator.

i FIELD SIZE

(bits) FIRE PDU FIELDS

8 8 PROTOCOL 8-bit unsigned integer
VERSION

8 POU TYPE 8-bit unsigned integer

8 EXERCISE ID 8-bit unsigned Integer

40 PADDING 40-bit unsigned Integer

Site - 16-bit unsigned integer

S48 ATACKERID Host -1 6-bit unsigned integer

Vehicle - 16-bit unsigned integer

16 EVENT IO 16-bit unsigned integer

II

I

C5-13
I -10-

Appendix C5 - Attachment 1 LOR L MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992 •

FIELD SZE I
(bits) FIRE PDU CO NUED

Projecile -32-bit unsigned integer

BURST Detonator -32-Wit unsigned integer
96 DESCRIPTOR Quan•ty - 16-bit unsigned integer

Rate - 16-bit unsigned integer

Target Type - 8-bit integer

umised - 8-bit Integer

DESCRIPTOR Site - 16-bit unsigned integer

Host -16-bit unsigned integer ,
, Vehicle - 16-bit unsigned Integer

Sx - 32-bit floating point96VELOCrTY

VECTOR 32-bit floating point "
z - 32-bit floating point

LOCATION X - 64-bit floating point
192 (WORLD y - 64-bit floating point

COORDINATES) z - 64-bit floating point

Site - 16-bit unsigned integer

48 PROJECTILE ID Host - 16-bit unsigned integer
Vehicle - 16-bit unsigned integerI PADDING 8-bit unsigned Integer I

SFIRE TYPE 8-bit unsigned integer I
Range - 32-bit floating point

SHELL Slew Rate - 32-bit floating point FIRE TYPE

DESCRIPTOR Ammo Type - 32-bit unsigned integer =se!U

I_ Padding -32-bit Integer

128 Tube - 8-bit unsigned integer

Padding - 8-b', unsigned integer
MISSILE Padding - 16-bit integer FIRE TYPE I

FIRE -- issile
DESCRIPTOR Padding - 32-bit integer e

Padding - 32-bit integer
Padding - 32-bit integer

C5-14 I
-11-

I

Appendix C5 - Attachment 1 69-O AL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

FIELD SIZE
(bits) FIRE POU CONTINUED

32 TIME STAMP unsigned Integer

Total Fire POU Size - 800 bits lB
Simulation PDU header information

PROTOCOL VERSION SIMNET protocol version used in the variant portion of the
PDU

PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)I Fire variant

ATTACKER ID Vehicle identification
Simulation address Site

Host
Vehicle

EVENT ID For correlation with impact PDU
BURST DESCRIPTOR

Projectile Munition
Detonator Detonator
Quantity # of projectiles
Rate Burst rate

TARGET DESCRIPTOR
Target type

0 Target unknown
1 Target not a vehicle
2 Target is a vehicle

Vehicle ID
VELOCITY VECTOR Velocity of the projectile
LOCATION World coordinates of origination of projectile
PROJECTILE ID Vehicle ID of projectile

Simulation address Site
I- Host

Vehicle
FIRE TYPE Type of projectile

1 Fire type shell
2 Fire type missile

If FIRE TYPE = shell
RANGE Range of munition
SLEW RATE rate
AMMO TYPE Type of ammunition

If FIRE TYPE = missile
TUBE Tube from which missile was launched

TIME STAMP Time when PDU was issued

C5-15i -12-

Appendix C5 - Attachment I L MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

2.6 Impact PDU

An Impact is issued by a simulator when the flight of a projectile it is simulating ends. It mi
or may not describe an impact between the projectile and a particular target vehicle.

FIELD SIZE
(bits) IMPACT POU FIELDS

8 PROTOCOL s8-bit unsigned IntegerVERSION I
8 PDU TYPE 8-bit unsigned Integer

81 EXERCISEI 10 8-bit unsigned integer I
40 PADDING 40-bit unsignedlinteger j I

Site -16-b tunsigned Integer

48 ATTACKER ID Host - 16-bit unsigned Integer
VWhicie - 16-bit unsigned inter

16 [EVENT 10 16-Ml unsdgned Integer

Projectile - 32-bit unsigned Integer
96BURST 60ftonwor - 32-Wi unsigned integerI !

Rate - 16-bit unsigned integer

Site - 16-bit unsigned IntegerI
48 PROJECTILE I Host - 16-bit unsigned Integer

Vehicle - 16-bit unsigned Integer J
8 FIRE RESULTI 8-W unsigned integer !
8 PADDING 8-bft unsigned integer

32 MOMENTUM__ 32-bi floatIng point

32 J ENERGY 32-bit floating point

C5-16 I
-13-

Appendix C5 - Attachment 1 LIIORAL. MultiRad Protocol Extensions
QWWý"wf t/

AL0692-009 Rev. E 1 December 19.92

FIELD SIZE
_(_its) IMPACT PDU CONTINUED

32 DIRECTIONALrTY 32-bit floating point

I LOCATION . - 64-bit floatng point
192 (WORLD y - 64-bit floafing point

COORDINATES) z - 64-bit floating point

64 RANGE 64-bit floating point

Site - 16-Wt unsigned integer

48 TARGET ID Host - 16-bit unsigned integer

Vehicle - 16-bit unsigned integer
S VEHICLE

16 COMPONENT 16-bit unsigned integer

I IMPACT x - 32-bit floating point96 LOCATION
96 (VEHICLE y - 32-bit floating point

I_ COORDINATES) z - 32-bit floating point

TRAJECTORY x - 32-bit floating point

9 (VEHICLE y - 32-bit floating point
COORDINATES) z - 32-bit floating point

32 TIME STAMP 32-bit unsigned integer

L 16 PK 16-bit Integer

Total Impact PDU Size 928 bits j8

I Simulation PDU header information
PROTOCOL VERSION SIMNET protocol version used in the variant portion of the

I POU
PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)

Impact variant
ATTACKER Iu Vehicle identification

Simulation address Site
HostI Vehicle

EVENT ID For correlation with fire PDU
BURST DESCRIPTOR

Projectile Munition

C5-17* -14-

Appendix C5 - Attachment I •1L MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

Detonator Detonator
Quantity # of projectiles
Rate Burst rate

PROJECTILE ID Vehicle ID of projectile
Simulation address SiteHost

Vehicle
FIRE RESULT

14 Hit / Terminate / KIll
15 No target miss
16 Velocity gate miss
17 Gimbal limit miss I
18 Ground impact miss
19 Low closure rate miss
20 Low velocity miss I
21 Max time of flight miss
22 Safe-arm miss
23 Low probability of kill miss I
24 Excessive miss distance
25 Target already killed
26 Line of sight miss (AIM-9)
27 Jettisoned
28 Terminated but not yet scored

MOMENTUM Momentum of projectileI
ENERGY Energy of projectile at impact
DIRECTIONALITY Directionality of projectiles explosion in steradians
LOCATION Location of impact in world coordinates (meters) I
RANGE Range of projectile
TARGET ID Vehicle ID of target

Simulation address Site
Host

Vehicle
VEHICLE COMPONENT Component struck by projectile

0 Vehicle component irrelevant
1 Hull component
2 Turret component

IMPACT LOCATION Location of impact in vehicle coordinates
TRAJECTORY Vehicle coordinates
TIME STAMP Time when PDU was issued
PK Probability of kill

C5-18

-15-

Appendix C5 - Attachment I L••RAL MultiRad Protocol Extensions

i AL0692-009 Rev. E 1 December 1992

2.7 Radar PDU

I A Radar periodically issued by the simulator of a vehicle possessing a radar. The
PDU's describe the location, and characteristics of the signals with the following data:

I FRELD SIZE
(bits) RADAR PDU FIELDS

I 8 PROTOCOL 8-bit unsigned integer
VERSION

I8 j PDU TYPE 8-bit unsigned integer

J8 EXERCISE ID 8-bit unsigned integer

40 PADDING 40-bit unsigned integer

Site - 16-bit unsigned integer
48 VEHICLE ID Host - 16-bit unsigned integer

I Vehicle - 16-bit unsigned integer E

8 #ILLUMED 8-bit unsigned Integer

8 PADDING 8-bit unsigned integer

I 32 RADAR SYSTEM 32-bit integer

8 RADAR MODE 8-bit unsigned integer

8 PADDING 8-bit unsigned integer

Azimuth Center - 32-bit floating point

128 SWEEP Azimuth Width - 32-bit floating point

Elevation Center -32-bit floating point
Elevation Width - 32-bit floating point

32 POWER 32-bit integer

32 TIME STAMP 32-bit unsigned integer jE

!II!
* -16-

Appendix C5 - Attachment I LORAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

FIELD SIZE R
(bits) RADAR PDU CI'iNUED

Site - 16-bit unsigned integer
VEHICLE ID Host - 16-bit unsigned Integer For Each

80 n Vehicle - 16-bit unsigned integer Illumined
, , ,Entity

RADAR DATA 32-bit integer

Total Radar PDU Size -368 + 80n bits js
Simulation POU header information I

PROTOCOL VERSION SIMNET protocol version used in the variant portion oi thE

PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)

Radar variant
VEHICLE ID Vehicle identification

Simulation address Site I
Host

Vehicle El
ILLUMED Number of vehicles illuminated by radar
RADAR SYSTEM Bit field identifying radar system

Radar System Category (Bits 28-31)
0 Reserved (unused) I
I Air-Based Fire Control
2 Air-Based Search
3 Ground-Based Fire Control I
4 Ground-Based Search
5 Sea-Based Fire Control
6 Sea-Based Search I

Radar System Subcategory(Bits 16-23 optional)
Radar System ID (Bits 0-15)

0 Reserved 14 HighLark I
1 APG-66 15 AN/APS-1 25
2 APG-68 16 LN-66 HP
3 APG-63 17 AN/APS-1 66I
4 APG-65 18 AN/APS-1 15 I5 AP-70 19 ANSPO-9

6 JAYBIRB 20 AN/SPO-gA

9 (Mig-27) 23 AN/SPS-55
10 (Su-27) 24 AN/SPS-67
11 AN/APY-2 25 AN/SPS-10

C5-20

-17- I

Appendix C5 - Attachment I LMMAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

1 12 SUAWACS 26 SPY-la
13 FoxFire

RADAR MODE Current radar mode
1 Search
2 Doppler HPRF
3 Doppler MPRF
4 Doppler LPRF
5 Monopulse
6 Acquisition
7 Tracking
8 Track while scan
9 Terrain follow
10 Data link

AZIMUTH CENTER Azimuth center angle (degrees) I E
AZIMUTH WIDTH Azimuth width half angle (degrees) EII
ELEVATION CENTER Elevation center angle (degrees) I E
ELEVATION WIDTH Elevation width half angle (degrees) I E

SRADAR CONE

RADAR POWER Average emitting power in decibel milliwatts
TIME STAMP Time when PDU was issued I E
RADAR TARGET LIST

Vehicle ID
Radar data

bits 24 - 31 -> Radar Mode pertaining to applicable Vehicle ID
bits 0 - 23 -> Specific Radar System/Radar Mode data (optional)

Might be : Polarization, Freq Hopping, Staggered
PRF, etc]

NOTE: Due to Ethemet packet constraints, the limit on the number of radars per I E
PDU is theoretically 100. However, in actual practice, the number is normally in I E
the range of I to 10 radars. JE

SC5-21

Appendix C5 - Attachment I MA L MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

2.8 Er tter PDU

An Ermr:-:r periodically issued by the simulator of a vehicle possessing an Emitter(s). E-
The PDU's describe the location, and characteristics of the signals with the following E-
data:

F:SLD SIZE I
(bits) E POU FELDS

8 PROTOCOL 8-bit unsigned integer 1
VERSION

8 POlU TYPE 8-bit unsigned integer I
8 EXERCISE iD 8-bit unsigned integer

40 PADDING 40-bit unsigned integer (

Site - 16-bit unsigned integer
48 VEHICLE ID Host - 16-bit unsigned integer

Vehicle - 16-bit unsigned integer

16 # EMiTTERS 16-bit integer

32 TIME STAMP 32-bit unsigned integer

EMITER CLASS 16-bit unsigned integer

DATABASE # 16-bit unsigned integer

EMrI'TER MODE 16-bit unsigned integer U
EMITTER POWER 16-bit unsigned integer

2-:6 n
FREOUENCY 32-bit floating point For Emch

CHANNEL 32-bit unsigned integer

Azimuth Center - 32-bit floating point

Azimuth Width - 32-bit floating point
SWEEPElevation Center - 32-bit floating point

Elevation Width - 32-bit floating point

Total Emitter PDU Size a 160 + 256n bits (B

Simulation POU header information

C5-22
-19-

Appendix C5 - Attachment 1 O A MultiI~ad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

PROTOCOL VERSION SIMNET protocol version used in the vardant portion of the
PDU

PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)

I Emitter variant
VEHICLE ID Vehicle identification

Simulation address Site
Host

Vehicle
EMITTERS Number of emitters on vehicle I E
TIME STAMP Time when PDU was issued I E

For each emitter
EMITTER CLASS

0 Other 9 SHF
1 Sound 10 EHF
2 infrasonic2 I 11 Infrared
3 VHF 12 Visible
4 LF 13 Ultraviolet
5 MF 14 XRay
6 HF 15 Gamma Ray
7 VHF 16 Cosmic Ray

DATABASE NUMBER
VHF Ox0001 ILS 0x0020 Jammer 0xl000
UHF 0x0002 0x OX0100
TACAN OxO010 IFF 0x0200

EMITTER MODE
0 Transmit
1 Mode 1
2 Mode2
3 Mode 3
4 Mode 4
5 Mode 4a
6 Mode 4b

EMITTER POWER Average power of emission
FREQUENCY Frequency of emission
CHANNEL Emitter channel
AZIMUTH CENTER Azimuth center angle (degrees) I E
AZIMUTH WIDTH Azimuth width half angle (degrees) I E
ELEVATION CENTER Elevation center angle (degrees) IE
ELEVATION WIDTH Elevation width half angle (degrees) I E

NOTE: Due to Ethemet packet constraints, the limit on the number of emitters per I E
PDU is theoretically 40. However, in actual practice, the number is normally in the I E
range of 1 to 10 emitters. E

20 C5-23

-20-I

Appendix C5 - Attachment 1 lMM ,RAL MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

2.9 Freeze PDU I
The freeze PDU is used to bath freeze and unfreeze. It can be used both globally and
individually.

FIELD SiZEi
(biE1 ts'Z FREEZE PDU FIELDS

8 PROTOCOL 8-bft unsigned integer
VERSION

8 PDU TYPE 8-bit unsigned integer

8 EXERCISE ID 8it unsigned integer

40 PADDING 40-iit unsigned integer E

8 FREEZE MODE 8-bit unsigned integer

8 PADDING 8-bit unsigned Integer

32 TIME STAMP 32-bit unsigned Integer

16 # VEHICLES 16-bit unsigned integer

Site - 16-bit unsigned Integer For each

48 n VEHICLE ID Host - 16-bit unsigned integer 1 Selected

Vehicle - 16-bit unsigned integer Vehicle

Total Freeze PDU Size = 128 + 48n bits 1
Simulation PDU header information

PROTOCOL VERSION SIMNET protocol version used in the variant portion of the
PDU

PDU TYPE PDU type to follow in the variant portion of the packet
EXERCISE ID Exercise generating PDU (important when multiple

exercises on network)
Freeze variant 1

FREEZE MODE
0 Unfreeze
1 Freeze

TIME STAMP Time PDU was issued
VEHICLE Number of vehicles to change freeze state (Note: use 0 forglobal)

C5-24 1
-21-

3Appendix C5 - Attachment 1 IA MultiRad Protocol Extensions

AL0692-009 Rev. E 1 December 1992

VEHICLE ID ARRAY Optional array of vehicle ID's if selectively changing
freeze state

Simulation address Site
Host
Vehicle

III
,I

I
i

I
I
I

I
I-
I
I

* -22-

Appendix C5 - Attachment I W~RAL MultiRad Protocol Extensions

AL06.02-009 Rev.E 1 December 1992

APPENDIX A

SIMNET 6.6.1+
NETWORK PROTOCOLS

FOR THE
TRUE & WAR BREAKERI

PROG RAMS

Guise Definitions

WChaffO F-4S: 0x24823021 JO

F .5 F: 0x24823821 I C *
Chaff: 0x41 00400 A-7: 0x24824001 I C

Pioneer RPV: 0x24824003 IC *
E-80 x24824803 Icf

Flares ''TR-1A:
0x24825003 IC

TR-1 S: 0x24825023 IC *
MJU-7I: 0x81 00407 KC-10A: 0x24825807 IC f
MJU-1 0: 0x810040a E-3: 0x24826008 IC

EF-i 11A: 0x24826809 IC *
F-4G: 0x24827009 IC 3

AAA F-1 8: 0x24827801 1C
A-6: 0x24828001 jO

ZSU23..4M: Wx8842821 83-52G: 0x24828804 1C 3
F-22: 0x24828801 fC
AH-64: 0x25820802 IC

US Air Vehicles OH-580: 0x25821 003 IC 3
OH-58C: 0x25821023 1O

A-10: 0x24820802 AH-1: 0x25821 802 IC
F-16A: 0x24821021 UH-60: 0x25822005 IC 3
F-1 62 - x24821041 CH-47: 0x25822806 IC
F- 16C: 0x24821061
F-160: 0x24821081
F- 14A: 0x24821 821 IC US Ground Vehicles
F-1 40: 0x24821 841 tO
F-1 5E: 0x24822021 jO MI: 0x2882080c IC 3
F-I SC: 0x24822042 IC M60: 0x2882100c IC

F-20: 0x2482280l IC M2: 0428821022 10

C5-26

Appendix CS - Attachment 1 MultiRad. Protocol Extensions

AL06IW2-009 Rev.E 1 December 19902

APPENDIX A
(Continued)

Guise Definitions

M3: 0x28821 047 IC DD976: 0x3302084d ic
M1 13A2: 0x28821822 IC DD964: 0x3302086d ICM1 13 FIST: 0x28821 842 IC CG47: 0x3302102b IC
M113 CG42: 0x3302104b joIambulance: 0x28821 862 IC CG52: 0x33021 04b JOM1 13 engineer: 0x28821882 IC CVN68: 0x33021829 IC
M577: 0x28821843 IC CVN69: 0x33021849 *jCIWMOWA: 0x28821865 ic CVN70: 0x33021869 ICM109: 0x28822004 IC BB71: 0x33022028 IC
M88A.1: 0x28822828 IC B672: 0x33022048 ICIADATS: 0x28823001 IC 8873: 0x33022068 ICLOSAT: 0x2882380a IC BB74: 0x33022088 IC
M35A2: 0x2a020829 IC PHM1: 0x3302b032 ICIM977: 0x2a021 029 IC PH-M2: 0x3302b052 ICM078: 0x2a021 049 IG CG-26: 0x3302282b IC
M57: 0x2a82080d IC** CG16: 0x3302302b ICIM128: 0xa82100d IC CG17: 0~t3302304b ICM57: 0x2a82080d IC CGN38: 0x3302382b IC
M128: 0x2a82100d IC CGN36: 0x3302402b JO
M58A1: 0x2a82180d IC CGN37: 0x3302404b IC
PALLET: 0x2a822009 IC .CGN35: 0x3302482b IC
A22: 0x26820809 IC CGN25: 0x3302502b IC
HUMMV: 0x2a02180f IC CGN9: 0x3302582b IC
M270: 0x28820806 IC CV63: 0x33026029 IC
M901 (Patriot CV64: 0x33026049 IC
launcher): 0x2a820001 IC CV65: 0x33026069 Ic
MPQ53 (Patriot CV59: 0x33026829 JO
radar): 0x2a820010 IC CV41: 0x33027029 JO

CV42: 0x33027040 IC
CVN65: 0x33027820 IC

US Sea Vehicles 'DDG5 1: 0x3302802d IC
DDG52: 0x3302804d I CLHD1: 0430820822 IC MDGM9: 0x3302882d I C

LHD2: 0x30820842 IC DDG904: 0x3302884d IC
LCC19: 0x30821024 IC DDG40: 0x3302902d I C
LHA1: 0x30821822 IC DDG2: 0x3302982d IC
LPH2: 0x30822022 IC FF1052: 0x3302a-031 IjO
LKA113: 0x30822823 IC FF1040: 0x3302a831 IC

DD963: 0x3302082d IC FFG7: 0x3302b831 IC

CI2

AppefldV(OMA C5-Atahen
4ultiRad PrOtOcOl Extensiorns

Al-0692-00 .9 Flev-E
1 December 19923

APPENDIX A
(Continued)3

Guise Definitions

F~I:0~3OC0l iC Mi-6: 0x25843 805 1C

SS6N726 0x332S2O31 I Mi-26: 0X2584 4006 IC3

SSBN726: 0x32 8208 27 IC

SSSN728: 0x32820867 I--USSR Ground Vehicles

SSBN640: 0x32821 027 IC

SSN585: Ox32822O26 IC BRM: 0x2884 4 0 07 I

SSN585: 0x32822O4 6r IC BRDM2: 0x2904 48 0 7 jo
SSN5901 0x3282-28 2 6 jC ACRV: 0x288 43 0 0 3 jcU

SSN688: 0x32822 8 26 IC GAZ66: Wxa040 8 0 9 IC
SIS 4689 O3282246 IcURAL350x a041029 I

5N753: Qx32822 S6 6 IC URL7C x2a0410 2 9 I

SSo x328230 2 6 IC URAL375F: 0x2a041 80 9 IC
AS5041 0x3182082c IC ZIL157: I
AD41: 0x31 82084c IC SU refueler: 0x2a0420 0 9

A042, 0x31 821 02a jc water carrer. 0x2a0428 0 9 IC
AF0:UAZ460. 0xWa04080f jC

PMR3: 0x2a84000d IC

USR irVeicesMICUIC: 0x2a84080d IC
USRMirVeice Ox2aO4000d IC

SU2W x48408 02 PALLET. 0x2a840 809 PC
SU-25: ox2484 2002 A22: Ox268408 8 ICU
SU-27: 0x24841OO 4 IC BREMI: 0x2884O8 0c IC

TU-20: 0x2484l 804 IC 780: 0x848C Ic
TUg-22: 0x 4 4l 0 T72M: 0%2884082c j

Mig-27: Qx2484l 801 T64: 0x2884480c)C

Mig-21: 0x2484180 1i j T62: 0x2884500C IC

Mig-21: Ox24842 00O 1c T55: 0x2884580C IC

Mig-25: Qx24843 0 01 jCT54: 04288460OC IC

Mig-31: 0x24843 0Oi 1C Chieftain: 0x2B84680C 1C

Ft-i1: Qx248 44 00 1 IC BRDM: 0x29040B02 IC

FL-1: 0x24844080 jO BMPI: Ox28 84 1 022 IC

IL-76: ox2484O8O2 IC BMP1K: 0x28841043)C

Mi-24: Qx2584O8 02 IO BTR8O: Wxa0 41 802 1C

Mi-24F- 0x25840 8 02 IC BMP2: OX2884 2002 IC

Mi-28F: 0X258 4l0022 IC MTLB: 0x28842822 I

Mi-8:, 0x2584l 8O2 IC MTLB3
M-17 0 : x25841002 IC ambulance: 0x28B42B42 IC

SA-342: 0x25842 002 IC BM21: Wxa040826 jO

SAB-342: 0x25843 0 0 2 IC M1 943: xa8'8 5 0

C5-283-A-3-

Appendix C5 - Attachment I LOPAL MultiRad Protocol Extensions

IAL0692-009 Rev.E 1 December 1992

APPENDIX A
(Continued)

* Guise Definitions

105 HOWITZER: 0x2a840804 Ic Lane Marker: 0x60000003 (C
D20: 0x2a841004 1C Broken Stone
2S1: 0x28841804 IC Bridge: 0x60000004 IC
SCUD-B: 0x2904082e IC Broken Steel
FROG-7: 0x2904102e IC Bridge: 0x60000005 IC
MAZ543 (SCUD Broken Low
TEL): 0x2a04182e IC Bridge: 0x60000006 IC
ZSU23-4M: 0x28842821 IC Long Track
ZSU57_2: 0x28840821 IC Radar: 0x60000007 1C
SA-02: 0x2a041021 IC Bar Lock Radar: 0x60000008 IC
SA-03: 0x2a041821 IC Arrow: ox6oooooo9 IC
SA-06: 0x29043021 1C

SA-07: 0x29043821 C Colored Cubes ..
SA-08: 0x29044021 1C
SA-09: 0x29044821 IC Black Cube: Ox6000000a IC
SA-13: 0x29046821 1C White Cube: Ox6OOOOOOb 1CII
ROLAND: 0x29047021 JC Red Cube: Ox6000000c JCI HAWK: 0x29047821 1C Orange Cube: Ox6000000d IC
S_60: 0x2a840821 IC Yellow Cube: Ox6000000e IC

Green Cube: Ox6000000f 1C
Blue Cube: 0x60000010 1CUSSR Water Vehicles Violet Cube: 0x60000011 IC

ALFA: 0x32840806 ICI
"" German Vehicles "" " Logistics Structures

I -LEO 2: 0x2886080c IC Ammo Crate: 0x60000012 IC
MARDER: 0x28861002 IC Tent: 0x60000013 ICI

"" Other Structures 73 Easting Battle Reenactment

I BUILDINGI: 0x60000001 IC Buildings

Minefield Barracks A: 0x60000015 IC
Marker: 0x60000002 lC Barracks 8: 0x60000016 IC
Breached Barracks C: 0x60000017 IC

I
C5-29i -A-4-

Appendix C5 - Attachment I LMRAL MultiRad Protocol Extensions

-0m m s . I

AL0692-009 Rev.E 1 December 1992APPENDIXA

(Continued)I
Guise Definitions

Barracks D: 0x60000018 (C '" Factories "
Barracks E: 0x60000019 IC
Barracks F: 0x6000001a IC Factory A: 0x6000002f IC *
Barracks G: Ox6000001b IC
Barracks H: 0x6000001c IC
Barracks 1: Ox6000001d 1C 0.0 Garages I
Barracks J: 0x600000le IC
Barracks K: Ox6000001f iC Garage Open W: 0x600C. : :30 1C
Log Site: 0x60000020 IC Garage Open Y: 0x600C.,031 1C I

Power
Transformer

"Buildings Station: Ox600C :32 1C *
Cross T: 0x60000021 IC
Large Houses
Residential
Area: ox6ooooo22 Ic House RI: ox6ooooo33 (c
Large House S: 0x60000034 IC
Commercial House T: 0x60000035 IC
Area: 0x60000023 IC
Hex A: 0x60000024 IC
Brick A: 0x60000025 IC

"°°Non-Buildings U'
"" Railroad Structures

Smoke Stack B: 0x60000026 IC 3
Minaret A: 0x60000027 IC Railroad car A: 0x60000036 IC
CorralOC: 0x60000028 IC Railroad car B: 0x60000037 IC
Oil Tank A: 0x60000029 IC Railroad 3

garage A: 0x60000038 jC

""Warehouses ""I
"" h Water Processing

Warehouse A: 0x6000002a CC Structures
Warehouse D: 0x6000002b IC
Warehouse G: 0x6000002c 1C Water Pump
Warehouse W: 0x6000002d IC Station A: 0x60000039 (C
Warehouse Y: Ox6OOOOO2e 1C

:5-30

-A-5-

Appendix C5 - Attachment 1 LORAL MultiRad Protocol Extensions

UAL0692-009 Rev.E 1 December 19-92

APPENDIX AI (Continued)
Guise Definitions

Water Pump *~FuelIStation B: 0x6000003a IC
Water Plant: 0x6000003b IC Fuel: 0x46000000 IC
Water Tower S: 0x6000003c IC

'~Highway Structures U muio

M904: 0x420f10420 I1C
Highway M557: 0x42b10420 IC
Deck 100m: 0x6000003d IC M513: 0x42b20420 IC

M739: 0x43010420 IC

FredyD:Ufe Formsr M603: x204 I
M33: 0x48280420 IC

Grieudl DI: 0x80000001 IC M509: 0x48340440 IC
Groupv DI: Wx0000002 IC M7961: 0x48bb0420 (C
Friendly M7329: 0x48b40420 1O
Grupe Dl: 0x80000005 1C M178: 0x48340420 1C
Enemy UeD: 08000 ICM855A: 0x481 80421 IC
Frien'dly M856: 0x481 80422 JOCoumn Dl: 0x80000007 IC M1k07: 0x4c510420 I

Enemy GBU-10: 0x4d400400 IC
Column 01: 0X80000008 IC GSU-12: 0x4c590420 IC

GBU-16: 0x4ca90440 IC
Difue aterGBJ-1 5-1B: 0x4db90460 IC
Difue aterGBU-15-2B3: 0x4db090461 IC

MediumI Atmospheric "US Missiles
Cloud: OxdO9O4lOO IC
Medium TOW: 0x442b0420 ICISmoke Cloud: 0xd1204100,) IC M47: 0x442b0440 IC
Medium Flame: 0xd1904100 IC Hellfire: Ox'±42b0460 IC

Maverick: 0x442bO480 IC

Sidewinder: 0x441 40420

C5-31

Appendi-1x C5 - Attachment I LORqAL MultiRad Protocol Extension~s

AL0692-009 Rev.E 1 December 199-2

APPENDIX A
(Continued)

Guise Definitions

ADATS: 0x441 40440 IC Hydra70 M26 1: 0x44220420 I C
Stinger: 0x441 40460 IC Hydra7O M255: 0x44120420 Ic
Tomahawk: 0x448b0420 M73: 0x484b0420 ic
Patriot: 0x44340440 (C Flechette 60: 0x481 80440 IC
AIM-9L-: 0x44140421 M433: 0x42610420 jo
AIM-9M: 0x441 40422 M439: 0Y426 30420 IC
AJM-9P: 0x441 40423 M26: 0x440 20440 10
AIM-9J1: 0x441 40424 M26 bomblets: 0x481b0420 IC
AIM-90: 0x44140425 C-P~omb: Ox4cbl 0420 10
AIM-9G: 0x441 40426
AIM-9H-: 0x41 40427
Hawk: 0x441 40441 IC USSR ammuniton
AIM-7M: 0x441 40480
AIM-7Lz 0x441 40481 UV-32-57: 0x44240820 IC
AIM-7F: 0x441 40482 SNEB-68: 0x44240840 IC
AIM-7E: 0x441 40483 UV-20-80: 0x44240860 IC
AIM-12OA: 0x44140484 IC S-5: 0x48640820 1C,

STYX-C: 0x44640820 IC
Songster: 0x442b0820 IC,

US Mines Spandrel: 0x442b0840 IC
Spiral: 0x442b0860 IC

M15: Ox4el 10421 IC SwatterC: 0x442b0880 IC
M19: 0x4e110441 1C HOT: 0x442b08a0 IC
M21: 0x4e110461 IC Mistral: 0x44140800 IC
M741: 0x4e11048"1 IC Gremlin: 0x44140820 IC
M718: Ox4ellO4al IC ALHUSAYN
M75: Ox4el 104cl1IC (SCUD): 0x44840820 IC
M14: 0x4e210421 IC 125HEAT: 0x48db0820 IC
M18A1: 0x4e210441 IC 125SABOT: 0x48d80820 IC
M16A2: 0x4e210461 IC 73HEAT: 0x488b0820 IC
M731: 0x4e210481 IC 30HE: 0x48340820 IC
M692: 0x4e2104a1 IC 20AP: 0x48280880 IC
M74: 0x4e2104cl1IC 23AP: 0x482808a0 (C
M56: Ox4el 104cl1IC 30SABOT: 0x48380820 IC

145MG: 0x48280820 IC
127AA: 0x48280840 IC

US Rockets 127MG: 0x48280860 1C
FA8250: 0x4c510820 IO

Hydra70 M151: 0x44240420 IC FAB500: 0x4cb10820 IC

C5-32

Appendix C5 - Attachment 1 LmiqAL MulidRad Protocol Extensions
OupiWs"l.MO

IAL0692-009 Rev.E 1 December 1992

* APPENDIX A
(Continued)

I Guise Definitions

Tank Internal
Explosion: Ox4cbl 0840 1C
PC Internal "USSR Mines
Explosion: Ox4cbl 0841 1CUMissile Carrier TMD-B: 0x4e110820 IC
Internal YAM-5: 0x4e110840 IC
Explosion: 0x4cb10842 IC TM46: 0x4e110861 ICIFuel Truck I TMN46: 0x4e110881 (C
nternal TM57: Ox4ellO8aO 1C
Explosion: Ox4cbl 0843 1C TM62: Ox4e 11 8c0 (CIAmmo Crate TMK2: Ox4e1lO8eO 1C
Internal POMZ29: 0x4e21 0820 (C
Explosion: 0x4cb10845 1C. OMZ3: 0x4e21 0840 (CIVehicle MON5O: 0x4e21 0861 10
Shrinking MON100: 0x4e210862 1C
Smoke: 0x481b0820 (C M0N200: 0x4e210863 1CIFuel Site PMN: 0x4e210880 I0
Shrinking PMK40: 0x4e2108a0 (C
Smoke: 0x481b0821 ICI Ammo Site
Shrinking
Smoke: 0x481b0822 (CISA-2 missile: 0x441408a2 (D
SA-3 missile: 0x441 408a3 ID
SA-4 missile: 0x441408a4 ICISA-6 missile: 0x441 408a6 (C
SA-7 missile: 0x441 408a7 1C
SA-8 missile: 0x441408a8 1CI23mm: 0x441 809001 IC
30mm: 0x441 809.02 IC
57mm: 0x441 80903 (C

*"German Munitions..

120HEAT: Ox48cbOc2O (C
1 20SABOT: 0x48c80c20 (C
20SABOT: 0x48280c20 (C
Milan: 0x442b~c20 (C

-A-8-C5-33

Appendix C5 - Attachment 1 LORAL MultiRad Protocol Extensions

ovuJm SlYsllus. aONim

AL0692-009 Rev.E 1 December1992

APPENDIX B I
SIMNET 6.6.1+

NETWORK PROTOCOLS I
FOR THE

TRUE & WAR BREAKER i
PROGRAMS

I
PDU TYPE NUMBERS

PDU I TYPE NUMBER 1 I

ACTIVATE REQUEST 1I

ACTIVATE RESPONSE 2I

DEACTIVATE REQUEST I3
VEHICLE APPEARANCE 5

FIRE J 7

IMPACT 8

RADAR - 30

EMITTER 31

FREEZE 33

C5-34

-B-i -

IIIII I I II I I Ii

I
APEDXCIPRITN BETPOOO

I
IPEDXC: PRITN BETPOOO

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

I Naval Research Laboratory, Contract Number: N00014-92-C-2150
Data Item Number: A001, ModSAF B Software Documentation

I
LibP O

Persistent Object Library

3 Joshua E. Smith
Anthony J. Courtemanche

I $Revision: 1.33 S

C
I

I
I

U Copyright (® 1993 Loral Advanced Distributed Simulation, Inc.

I
I

i I I I I I I I I

I
I
I
I
I
I
I
I
I
I

Copyright © 1993 Lora~l Advanced Distributed Simulation, Inc.

I
I

Table of Contents

I
1 O verview 1I
2 Usagei....... ... 3

2.1 Building Libpo 3
2.2 Linking with Libpo ... 4

I3 Data Types .. 5

4 Events and Event Handlers 7
4.1 send.handler ... 7
4.2 query.handler ... 7
4.3 overlay-confirmation.handler 8
4.4 new-simulator-event.handler 8
4.5 simulator.gone.event-handler 9
4.6 new.entry.event-handler ... 9
4.7 entry.changedcevent.handler ' 10
4.8 entry.gone.event-handler .. 10
4.9 new-object.event-handler .. 10
4.10 object.changed.event.handler 11
4.11 objectg neevent .. 11
4.12 object-change.failed-event-handler 12
4.13 delete-.allevent.handler 12
4.14 world.state.changing.eventjhandler 13
4.15 world.state.changed-event.handler 13
4.16 animation.event.handler ... 144.17 animation-timeout-.event.handler 14
4.18 project-event.handler ... 15

4.19 exerciseinitialization.event-handler 15
4.20 packets-missed.event.handler 16

I Global Variables 17

5.1 po- rr o .. 17
5.2 po-errlist .. 17
5.3 po.reaLtime.world.state ... 17

I
I
I

ii LibPO Programmer's Guide

6 F unctions ... 19

6.1 po-create ... 19

6.2 po.destroy ... 19

6.3 po.delete-aU .. 20

6.4 po.process.packet .. 20

6.5 po.tick .. 21

6.6 po.create.object ... 21

6.7 po-create.world.state ... 22 I
6.8 po.-.hange-object ... 23

6.9 po-change.object-.missingfl ag 24
6.10 pochangeentry ... 25
6.11 po-change-entry-nissing-Rag 8 26

6.12 po-copy-objectinto-ws .. 27

6.13 po-set-object._user-data .. 27

6.14 po-entry-owner ... 28

6.15 po.simulator.name .. 28 i
6.16 po-find.simula.tor .. 28

6.17 po-delete.object ... 29

6.18 po-delete-objects .. 29

6.19 po.delete-entry ... 30

6.20 po-delete-entries .. 30

6.21 po.-getentry .. 31

6.22 po-get.object .. 31

6.23 po-query.for.current-objects 31 I
6.24 po-querydor..a].entries .. 32

6.25 po-set.wc-d..state .. 32
6.26 po-start-network-aImation 33
6.27 po.stopruetworkLanimation 33

6.28 po..find.base-worldcstate .. 34

6.29 po-find.overlay ... 34

6.30 po.object-color ... 34

6.31 po-clear.change-Rags ... 35 i
6.32 po.saveaU 335

6.33 po.save-overlay ... 35

6.34 po-loadMe .. 36
6.35 po-new.stealth .. 37

6.36 po-controLstealth ... 37

6.37 po-tim e ... 38

6.38 po.get.exercise-initialization 38

6.39 po.set-exercise-initialization 38 I
6.40 po.delete.exercise.initializa- on 39

6.41 po.get.simulationoad ... 39

I
I

6.42 po.set.simulationload .. 39

6.43 poJeast-simulation-loaded-simulator 40

7 M acros 41

7.1 POCLASS.MASK ... 41

7.2 PO-FULLCLASS.MASK ... 41

7.3 POOBJECT.IDESCRIBE ... 41

7.4 PO _OBJECTCLASS ... 41

7.5 POoOBJECTJID .. 42

7.6 POYWORLD-STATEDATA 42

7.7 PO.OVERLAYDATA ... 42
7.8 POYPOINTDATA ... 42
7.9 PO.LINE.DATA .. 42
7.10 PO-SECTORLDATA .. 43
7.11 PO _TEXT-DATA .. 43
7.12 POUNITDATA .. 43
7.13 POJIHOUR-DATA ... 43I 7.14 PO-STEALTHCONTROLLER.DATA 43
7.15 POTASK.DATA .. 44
7.16 POTASKRAME 44S..............................
7.18 PO.PARAMETRIC.INPUT.HOLDEAT DATA 44

7.19 PO.-EXERCISEJNITIALIZER.DATA 45

8 Using Xtest ... 47

9 Protocol Specification 49

9.1 Term s ... 49
9.1.1 Simulator .. 49
9.1.2 Active Simulator ... 49
9.1.3 Passive Simulator 49
9.1.4 W orld State ... 49
9.1.5 Valid 50

9.2 Protocol Requirements ... 50
9.3 Protocol Definition .. 51

9.3.1 Simulator Present PDU 52
9.3.2 Describe Object PDU 54
9.3.3 Creating a Persistent Object 55
9.3.4 Creating a World State 55
9.3.5 Changing a Persistent Object 56
9.3.6 Object Classes .. 57

9.3.6.1 World State Class 57

I
I

iv LibPO Programmer's Guide

9.3.6.2 Overlay Class 58

i.3.6.3 Point Class 59
9.3.6.4 Line Class 60
9.3.6.5 Sector Class 6-
9.3.6.6 Text Class 63 3
9.3.6.7 Unit Class 65
9.3.6.8 Commo Class 68
9.3.6.9 Stealth Controller Class 68
9.3.6.10 H-Hour Class 69
9.3.6.11 Task Class 70

9.3.6.12 Task Frame Class 71
9.3.6.13 Parametric Input Class 73
9.3.6.14 Parametric Input Holder Class 74
9.3.6.15 Exercise Object Class 74
9.3.6.16 Describe Object PDU Definition 75

9.3.7 Objects Present PDU 7T
9.3.b Object Request PDU 78
9.3.9 Delete Objects PDU 79
9.3.10 Set World State PDU 80
9.3.11 Nomination PDU 81
9.3.12 Top Level PDU 83

9.,. Throughput ... 84

Function Index....................................... 87.8

Index ... 89

I
I
U

I

i Chapter 1: Overview

I
1 Overviewi

The libpo library provides a simple interface to a shared database of "Persistent Objects." See
Chapter 9 [Protocol Specification], page 49 for more on the characteristics of persistent objects and
protocol specifics.

I iIn many cases, two versions of handlers or functions exist: one refering to "object" and the other
refering to "entry". In this context an entry is one world state (see Section 9.1.4 [World State].
page 49) of an object. Using po-set-world.state, the application can specify the world state of
objects it is interested in (the default is the Real Time world state). Thereafter, the application
can refer only to objects and libpo will manage the creation and modification of entries.

The program xtest.c is an xwindows based test program which creates multiple databases and
allows the user to experiment with the various functions of libpo. See Chapter 8 [Using Xtest],

SI

I
I
I
I
I

i
i
I
i
i

2 LIbPO Programnmer's Guide I

I
I
I

I I
I

I
I
I
I
I
I
I

• .ii i i i I i I I I I Ii

Chapter 2: Usage 3

2 UsageI
The software library 'libpo.a' should be built and installed in the directory 'common/lib/'.

IYou will also need the header file 'libpo.h' which should be installed in the directory
'common/include/libinc/'. If these files are not installed, you need to do a 'make' in the libpo

source directory. If these files are already built, you can skip the section on building libpo.

U 2.1 Building Libpo

The libpo source files are found in the directory 'common/libsrc/libpo'. 'RCS' format versions

of the files can be found in '/nfs/common-src/libsrc/libpo'.

U If the directory 'common/libsrc/libpo' does not exist on your machine, you can create it using

the following commands (assuming the 'common' software structure is present):

* cd common/libsrc
* mkdir libpo ; you may need root privilege to do this
* cd iibpo

8 in -s common/tools/make.config make.config
8 in -a common/tools/make.librules make.liorules
S touch make.depend
in -s /nlfs/common-src/libsrc/libpo RCS

I To build and install the library, do the following:

cd common/libsrc/libpo
co RCS/*,v
* make

This should compile the library 'libpo. a' and install it and the header file 'libpo .h' in the

standard directories. If any errors occur during compilation, you may need to adjust the source

code or 'Makefile' for the platform on which you are compiling. libpo should compile without

errors on the following platforms:U
0 Mips

@ SGI Indigo

a Sun SparcI
I

LibPO Programmer's Guide

2.2 Linking with Libpo i

Libpo can be linked into the an application program with the following link time flags: 'id I
(source .o files] -Lcommon/lib -Ipo -itime -irandom -lcallback'. If your compiler does not

support '-L' syntax, you can use the archive explicitly:
'id [source .o filesJ conmon/lib/libpo.a'.

Libpo depends on the following common libraries:

"* libra~idom

"* libtime

" libcallback

I
I
I
I
I,I
I!
I
I
U
I

I I II

I Chapter 3: Data Types

I
3 D ata TypesI

The two primary data types an application will need to use with libpo are PDDATABASE and
PODBENTRY.

An application will typically create one PQ.DATABASE at startup time with pocreate() and

will remove it at exit time with po-destroyo. This database is passed to all libpo routines.

An application will deal with many PODB.ENTRY structures. A single PD0DB_.ENTRY describes
the state of an object in the shared database at one time. An application creates new objects in

the database using po- create- objectO) or po-create-world...stateO. Applications learn about

new objects created by other users of the shared database through the events described below.

I
U
I
I
I
I

I!
U
I
I
I

6 ~LibPO Programmer's Guide

Chapter 4: Events and Event Handlers

I
4 Events and Event HandlersI

When an application first opens the database with po-create(), it provides a send handler
which is invoked by libpo in order to send PDU's to the network. Also, several events are created.
These events can be used to attach user handlers for certain events.

i The sections below describe the event handler functions by including a synopsis and a descrip-
tion.I
4.1 send.handler

void send.handler(pdu, size, user-data)
PersistentObj ectPDU *pdu;
uint32 size;
POUSER.DATA.TYPE userdata;

send-handler is called by libpo to send a packet.

I If the application is using the libassoc to send packets, the send handler might be coded:

void send-handler(pdu, size, assoc-handle)

PersistentObj ectPDU *pdu;
uint32 size;
int assoc.handle;

extern int g.exercise-id;
ertern assoc-error.handlerO;

ret = AssocSendDatagram(assoc-handle, pdu, size, gexerciseid,
persistentObj ectProtocolNumber);

if Cret<Q)
assoc-error-handler(ret);

[}

4.2 query-handler

void query-handler(entry, userdata)
PODBENTRY *entry;
PO.USERDATATYPE user-data;

I
I

LibPO Programmer's Guide

A query.handler is called in response to po.query.forcurrent.objects and in response

to po-query-for.all-entries. Each entry will contain a describeObjectPDU. Note that it is

not safe to delete objects or entries in a query.handler routine. Instead, an application should

compile a list of objects or entries to delete and delete them all with po.delete.objects or

po.delete.entries.

4.3 overlay-confirmration-handler

int32 overlay-confirmation.handler(name, user-data)
char *name;
POUSERDATATYPE user-data;

The overlay-confirmation-handler is called during the reading of files via poload..file. It

is called once for each new overlay encountered in the file. A return value of TRUE confirms that
the overlay can be loaded. A return value of FALSE indicates that file loading should be aborted.

This can be used to prevent the loading of overlays which are already loaded into the machine. See
Sec . 6.34 [po'load'file], page 36.

4.4 new -simulator-event-handler

The db->new- simulator-event is a libcallback event which can be accessed from an open

po database au. Applications may attach a new- simulator-event..handler to this event via
callback.register.,handler (see section "callback-register.handler" in LibCallback Program-

mer's Martial).

void nev.simulator.event-handler(entry, user-data)
P0_DBENTRY *entry;
ADDRESS user-data;

neosimulator-event-handler is called when a new active (see Section 9.1.2 [Active Simu-

lator], page 49) user of the shared database appears on the network. The entry will contain a

simulatorPresentPDU. The application can use this handler to keep the user informed of what
other machines might be modifying the database.

Note that the new- .simulator- event is destroyed after a po database is destroyed.

Chapter 4: Events and Event Handlers 9

I
4.5 simulator-gone-event-handlerI

The db->simulator.gone..event is a libcaflback event which can be accessed from an open
po database db. Applications may attach a s imulator.gone-event.-handler to this event via

callback-register-handler (see section "callback-register.handler" in LibCallback Program-

mer's Manual).I
void simulator.gone-event-handler(entry, user-data)

PODBENTRY *entry;
ADDRESS user-data;

s iulator-gone-event.-handler is called when an active (see Section 9.1.2 [Active Simulator],
page 49) user of the shared database disappears from the network. The entry will contain the last
simulatorPresentPDU sent by that simulator. The application can use this handler to keep the
user informed of what other machines might be modifying the database.

Note that the simulator-gone- event is destroyed after a po database is destroyed.

I
4.6 new -entry-eventihandler

The db->new-entry-event is a libcallback event which can be accessed from an open po

database db. Applications may attach a new-entry-event-handler to this event via
callback-register-handler (see section "callback-register.handler" in LibCallback Program-

mer's Manual).

f - void new.entry.event.handler(entry, user-data)
PODBENTRY *entry;
ADDRESS user-data;

new- entry- event -handler is called when a new entry is added to the shared database. The
entry will contain a describeObjectPDU. A new entry can describe a new object, or it can give

new world state informantion (see Section 9.1.4 [World State], page 49) to an existing object. This
is a low-level handler; most applications can rely instead on the neow-object- event -handler.

Note that the naowentry-event is destroyed after a po database is destroyed.

I
I

10 LibPO Programmer's Guide

4.7 entry-changed-event-handier

The db->.entry.-changed.-event is a libcallback event which can be accessed from an open

po database db. Applications may attach a entry-.changed-event.-handler to this event via

callback.register-handler (see section "ca~lback-register.handlere in LibCa~lback Program-

mer's Manual).

void enrtry-changed.event.chandler(entry, user.data)
PO.DBENTRY *entry;
ADDRESS user-data;

entry-.changed- event.-handler is called when an entry changes its data part. The entry will
contain a describeobjectPDU. This is a low-level handler; most applications can rely instead on
the obj ect.changed-event.handler.

Note that the entry.-changed-.event is destroyed after a po database is destroyed.

4.8 entry-gone.event-handler

The db->entry-gone.event is a libcallback event which can be accessed from an open
po database db. Applications may attach a entry-gone-event.handler to this event via
callback_.xegister-handler (see section 'sallback-register.handler" in LibCaLiback Program-
mer's Manual).

void entry-gone.event.handler(entry, user-data)
PODB.ENTRY *entry;
ADDRESS user-data;

ontry-goneoevent..handler is called when an entry is removed from the shared database. The
entry will contain .e last describesbjectPDU sent regarding the entry. This is a low-level
handler; most applica:ions can rely instead on the object-_gone.event.-handler.

Note that the entry.gones.event is destroyed after a po database is destroyed.

4.9 new .object-event.handler

The db->new.object.event is a libcallback event which can be accessed from an open

I Chapter 4: Events and Event Handlers 11

i
po database db. Applications may attach a nev.obj ect -event -handler to this event via

callback.register-handler (see section "callback-register.handler" in LibCallback Program-

mer's Manual).

void ne._object-oventhandler(entry, user-data)
PODBENTRY *entry;
ADDRESS userdata;I

new-object -event -handler is called when a new object appears in the current world state (see
Section 9.1.4 [World State], page 49). The entry will contain a describeObjectPDU.

Note that the new.obj ect -event is destroyed after a po database is destroyed.

4.10 object-changed-event.handler

iIhe db->object -changed- event is a Iibcallback event which can be accessed from an open
po database db. Applications may attach a object -changed- event -handler to this event via
callback-register-handler (see section "callback-register-handler" in LibCallback Program-

mer's Manual).

void obj ect-changed.event.handler (entry, user-data)
PO.DB.ENTRY *entry;
ADDRESS user-data;

I object -changed-event-handler is called when an object changes with respect to the current
world state (see '-"tion 9.1.4 [World State], page 49). The entry will contain a describeObj ectPDU.I

Note that the objectchanged..event is destroyed after a po database is destroyed.

i . 4.11 object-gone.event-handler

The db->objectgone-event is a libcallback event which can be accessed from an open

po database db. Applications may attach a object -gone -event -handler to this event via
callback.ragister-handler (see section "callback.register-handler" in LibCallback Program-

mer's Manual).

I
I

12 LibPO Prograimmer's Guide

void object.gono.ovent.handler(entry, user-data)
PO.DB.ENTRY *entry;
ADDRESS user.data;

object-gone-event.handler is called when an object disappears with respect to the cur-

rent world state (see Section 9.1.4 [World State], page 49). The entry will contain the previous
describeObjectPDU regarding the object.

Note that the object -gone- event is destroyed after a po database is destroyed.

4.12 object.change-failed-event-handler

The db->object-change.failed-event is a libcallback event which can be accessed from

an open po database db. Applications may attach a object.change.failed-event-handler to

this event via callback.register.handler (see section "callback.register.handler" in LibCallback

Programmer's Manual).

void obj ect-change.failed.event.handler.(entry, user.data)
PODE..ENTRY *entry;
ADDRESS user.data;

object.change-failed-.event-handler can be called when two simulators change the same
object at roughly the same time. The entry will contain the describeobjectPDU with the new

information, which can be passed to po..entry-.owner() to find the identity of the other simulator.

Note that the obj ect.change-.failed-event is destroyed after a po database is destroyed.

4.13 delete.all-event..handler

The db->delete..-all-event is a libcallback event which can be accessed from an open

po database db. Applications may attach a delete-allevent.handler to this event via

callback.register.handler (see section "callback.register.handler" in LibCaUback Program-

mer's Manual).

void delete.all.event-handler(entry, user.data)
PO.DBENTRY *entry;
ADDRESS user-data;

I Chapter 4: Events and Event Handlers 13

I
delete, all.event-handler is called when some simulator on the network explicitly deletes all

objects in the shared database. There is nothing an application can do to stop the deletion once it
has begun. This handler is called before the delete all occurs, so backing up objects to disk can be
done in the context of this handler. The entry will contain a simulatorPresentPDU which can be
passed to po-entry.ovner() to find the identity of the simulator which caused the deletion.

Note that the delete- all-event is destroyed after a po database is destroyed.

1 4.14 world.state.changing-event.handler

The db->world- state-changing-.event is a libcallback event which can be accessed from
an open po database db. Applications may attach a world- state changing-event -handler to
this event via callback-register.handler (see section "callback-register.handler" in LibCallback
Programmer's Manual).

void world-state-changing-event-handler(entry, user-data)
PODBENTRY *entry;
ADDRESS user-data;I

world.state...changing-event.handler is called before the current world state (see Sec-
tion 9.1.4 [World State], page 49) of the database is changed. This can be caused by an explicit
request from the application to change the current world state, a request from the network for
applications to set the world state, or by the current world state being deleted from the network.
The entry will contain a describe~bjectPDU describing the new current world state.

Note that the world.state.changing.event is destroyed after a po database is destroyed.

I " 4.15 world-state-changed-event-handler

The db->world- state-changed..event is a libcallback event which can be accessed from an
open po database db. Applications may attach a world- state-changed- event-handler to this
event via callback.register-handler (see section "callback.register..handler" in LibCallback
Programmer's Manual).

void world-state-changed-event-handler(entry, user-data)
PODB.ENTRY *entry;
ADDRESS user-data;I

I

14 LibPO Programmer's Guide

wors-tat..-changed- event.-handler is called when the current world state (see Sectior .1.4

[World State], page 49) of the database is changed. This can be caused by an explicit request :rom

the application to change the current world state, a request from the network for applications to I
set the world state, or by the current world state being deleted from the network. The entry will

contain a describeObjectPDU describing the new current world state.

Note that the world- st ate..changed-event is destroyed after a po database is destroyed.

4.16 animation-event.handler

The db->animation.event is a libcallback event which can be accessed from an open po
database db. Applications may attach a animat ion- event -handler to this event via

callback-register.handler (see section "callback-register.handler" in LibCallback Program-
mer's Manual).

void animation.event.-handler(pdu, user-data)
PersistentObj ectPDU *pdu;
ADDRESS user_data; I

animation-event.handler is called when another simulator on the network has issued a

SetWorldStatePDU.

Note that the animation-event is destroyed after a po database is destroyed.

4.17 anitaation.t~imeout-eventjhandler

The db->animation.-timeout- event is a libcallback event which can be accessed from an open

po database db. Applications may attach a animationt imeout -event.-handler to this ew'nt
via callback.register-handler (see section "callback-register-handler" in LibCallback Program-

mer's Manual).

void animat ion.t imeout-eventhandler (user.data)
ADDRESS user.data;

animation-timeout.-event -handler is called when a stream of SetWorldStatePDU is inter-

rupted (probably because of a missed packet).

Chapter 4: Events and Event Handlers 15

I
Note that the animat ion.timeout -event is destroyed after a po database is destroyed.I

4.18 project.event.handler

The db->proj ect-event is a ibcallback event which can be accessed from an open po database
db. Applications may attach a project -event -hand. or to this event via
callback.register.handler (see section "callback-register.handler" in LibCallback Program-
mer's Manual).

void project.event.handler(vehicleID, do-project, user-data)
ObjectID *vehicleID;
int32 do-project;
ADDRESS user-data;

1 project.event.handler is called when the stealthControllerClass object regarding the
stealth with the passed vehicleID first identifies the receiving simulator as the controller
(do-proj oct - TRUE), or no longer identifies the receiving simulator as the controller (do.proj Oct
== FALSE).

I Note that the proj ect-event is destroyed after a po database is destroyed.

1
4.19 exercise-initialization -event._handlerI

The db->exercise-initialization.event is a libcallback event which can be accessed from
an open po database db. Applications may attach a exercise initialization-.event-handlor to

this event via callback.register-handler (see section "callback-registerlhandler" in LibCallback
Programmer's Manual).

void exercise.initialization-event-handler(exercise-data, user-data)
ExerciselnitializerClass *exercise-dat~a;

ADDRESS user-data;

exercise- initialization.-event.handler is called when the ExerciseInitializerClass

object is first received or changed. The data in the object is passed to the handler as
exercise-data.

I Note that the exercise..initiajlization..even1: is destroyed after a po database is destroyed.

I
I

16 LibPO Programmer's Guide

4.20 packets..missed-event-handler n
The db->packets. missed.event is a libcallback event which can be accessed from an open n

po database db. Applications may attach a packets.missed- event-handler to this event via
callback.register.handler (see section "callback-register-handler" in LibCallback Program-

mee's Manual).

void packets.missed.event.handler(entry, num.missed, user-data) I
P0.DBENTRY *entry;
uint32 nummissed;
ADDRESS useer-data;

packets -missed- evenu.thandler is called when libpo detects that it has missed packets from
a simulator. The entry identifies the simulator which sent the packets. The num-missed field
identifies the minimum number of packets missed. Although it is possible that a simulator will not
detect missing packets, it is unlikely. This handler is provided only to aid in debugging. It is not
expected that an application would do anything more than print a message or keep a counter when
packets are missed. po.entry.owner can be passed with entry to get the symbolic name of the
simulator.

Note that the packets.,missed.event is destroyed after a po database is destroyed.

I

I
I
I
I
I

Chapter 5: Global Variables 17

I
5 Global VariablesI

The sections below describe the global variables by including a synopsis and a description.

5.1 po.errno

extern int32 po-errno;

po-errno works just like errno. When an error occurs, the reason is left in po.errno.I
5.2 po.errlist

extern char *po.errlist[;

po-errlist works just like sys-errlist []. When an error occurs, a string description of the
error can be found in po.-erriist[po_ errno).

I 5.3 po-real-time-world-state

extezrn Dbject.iD po.-realtimevorld.state;

3 po-real -t ime-world-st ate has the following components:

0 po..real-.time-..orld..state. simula~or . site ==0

* po.real.-time.vorld- state.simul ator.host == 0

* po-realtime-world-state.object == 0I
I
I
I
I

18
LibPO Programmer's Guide i

I
I
I
I
I
I

I~I[
I I

I
I

I
I
I
I

l Chapter 6: Functions 19

I
6 FunctionsI

The sections below describe the libpo functions by including a synopsis and a description.

I 6.1 po-create

l PODATABASE *po-create(db-type, exercise-id, database.id, simaddr,
unit-db-version, terrain,
hostname[], simulatortype,
send-handler, send.user-data)

int32 db.type;
uint8 exercise-id;
uint8 database_ id;
SimulationAddress *sim-addr;
int•6 unit-db-vers ion;

lTerrainDatabaseID *terrain;

char hostname[];
SimulatorType simulator-type;
SEND-HANDLER send-handler;
PO-USERDATATYPE send.user-data;

po.create creates a persistent object database.

The db.type is either PODATABASE.TYPEPASSIVE or
P 0_ -DATABASETYPE_ ACTIVE. simulator-type identifies the type of simulator that is opening the

database (see Section 9.1.2 [Active Simulator], page 49), and thus implicitly indicates to other
simulators that are maintaining this database what resources and services this simulator provides.

The send.handler, which must be non-NULL, is used by libpo to send packets on the network.
When a database is created, many libcallback events are created and stored in the returned database

* object. These events can be used to attach event handlers to. For descriptions of the event handlers,

See Chapter 4 [Events and Event Handlers], page 7.

3 The returned PC-DATABASE should be passed to all libpo routines.

3 A NULL return value indicates an error occurred.

I
6.2 po..destroy

I
U

20 LibPO Programmer's Guide

void po.destroy(db, cleonup)
POCDATABASE *db;
int32 cleanup;

po.destroy closes out a database. This function should always be called when an application
exits to ensure orderly transition of that application's objects.

The cleanup flag indicates whether allocated memory should be deallocated. This might take
some time for a large database, and is generally unnecessary in unix if a program is exiting.

This function returns no value.

6.3 po.delete-all

int32 po-deete-all(db)
PC- 7ABASE *db;

po-delete-all completely initializes the shared database. This is a highly destructive function,
and should be used with great caution.

The following handlers (if registered) can be invoked before this routine returns:

0 entry.gone..event -handler (see Section 4.8 [entry'gone'event'handler], page 10)

* new-obj ect -event -handler (see Section 4.9 [new'object'event'handler], page 10)

e object-changed.event-handler (see Section 4.10 [object'changed'event'handlerj, page 11)

* object -gone.-event-.handler (see Section 4.11 [object'gone'event'handler], page 11)

A NULL return value indicates an error occured.

6.4 po-process-.tacket

int32 po.process.packet(db, pdu, pdu.size)
PODATABASE *db;
PersistentObj ectPDU *pdu;
int32 pdu-size;

i Chapter 6: Functions 21

I
po.process -packet is the dispatching packet handler for libpo. Pass it all

persistent0bjectProtocolNumber packets received from the network. Do not loop back locally

sent packets to this function.

I A NULL return value indicates an error occured.

I
6.5 po.tick

void po.tick(db)
PODATABASE *db;

po_-tick must be called at least once every 10 seconds to ensure retransmission and timeouts

work correctly. However, the more frequently this routine is called, the more evenly distributed

packet traffic will be, and hence, the better the network will perform. This routine does no searching,
and hence one call per frame should cause no performance problems.I

This function returns no value.I
6.6 po.create.object

PODBENTRY *po.create-object(db, vorld-state, class,
missing.from-world&st at e,
variants, variant-size,
obj ectus.er-dat a)

PO-.DATABASE *db;
Obj ectID .*world.s.tate;
uint8 class;
uint32 missing.from.world.state;
"char *variants;
uint32 variant-._size;
PO._USERDATATYPE obj ect-user-data;

po.create.object creates a new object in the specified world-state (see Section 9.1.4
[World State], page 49). world-state can be NULL, in which case the object will be created

in the current world state for the database. Do not create world states using this routine (call

po.create-world.state instead (see Section 6.7 [po'create'world'state], page 22)). Also, do not

I create ExerciselnitializerClass objects using this routine (call

po set-, exercise, initial izat ion (see Section 6.39 [po'set'exercise'initialization], page 39).I
I

22 LibPO Programmer's Guide

The variants part is a pointer to a structure of type: LineClass, OverlayClass, PointClass,

etc. The variant-size can be found using the following p.size.h macros:

"* PROPOWORLDSTATE.CLASSSIZE

"* PROPOOVERLAYCLASSSIZE

"* PROPO.POINTCLASS.SIZE

"* PROPOLINE.CLASSSIZE

"* PROPOSECTORCLASSSIZE

"* PROPO.TEXT.CLASSSIZE

"* PROPOUNITCLASSSIZE

"* PR0_POHHOURCLASSSIZE

"* PR0_PO.STEALTH.CONTROLLERSIZE

A vorld-state of NULL will lead to the object being created in the current world state (see
Section 9.1.4 [World State], page 49) of the database as set by po-set-world.state.

The obj ect.user-data will be assigned to the new object before any handlers are called. An
application can use this field to identify whether objects were created locally or remotely (remote

objects are guaranteed to have NULL object.user..data at create time).

The returned PODB.ENTRY is the unique handle to the created entry. It is needed to delete or
change the entry.

The following handlers (if registered) can be invoked before this routine returns:

"* new-.entry- event.-handler (see Section 4.6 (new'entry'event'handler], page 9)

"* new.object.-event.-handler (see Section 4.9 [new'object'event'handler], page 10)

A NULL return value indicates an error occured.

6.7 p o -create-w orld..state

PO.DB_ENTRY *po.create.world-state(db, base.state,
description, secondsSince1970)

PODATABASE *db;
ObjectID *base-s.tate;
char description[];

Chapter 6: Functions 23

I
uint32 secondsSince1970;

I po-create-world-state creates a new world state (see Section 9.1.4 [World State], page 49),

built upon the passed base-state and with the description and time specified.

The returned PODBENTRY is the unique handle to the created object. It is needed to delete or

change the object.

The following handlers (if registered) can be invoked before this routine returns:

* new..entry-.event handler (see Section 4.6 [new'entry'event'handler], page 9)

e new-object -event -handler (see Section 4.9 [new'object'event'handler], page 10)

A NULL return value indicates an error occured.

6.8 po-change-object

PODB_EMThY *po.change.object(db, entry, variants, variant-size)
PODATABASE *db;
PODB.ENTRY *entry;
char *va~riants;
uint32 variant_ size;

po..change- object attempts to modify the object described in the passed entry. It will cre-

ate a new entry if the object has not yet been duplicated in the current world state (see Sec-

tion 9.1.4 [World State],.page 49) of the database as set by po-set-world.state. Do not change

ExerciseInitializerClass objects using this routine (call po.set- exercise.initialization
(see Section 6.39 [po'set'exerdse'initialization], page 39).

The variants part is a pointer to a structure of type: WorldStateClass, OverlayClass,u PointClass, etc. The variant-size can be found using the following p-size.h macros:

e PROPOWORLDSTATECLASSSIZE

a PR0.PO.OVERLAYCLASSSIZE

e PROPO.POINT.CLASSSIZE

* PRO.POLINECLASSSIZE

a PROPOSECTORCLASSSIZEI
I

24 LibPO Programmer's Guide

"* PROPOTEXT.CLASS.SIZE

"* PROPO0UNIT.CLASSSIZE

"* PRrPOHHOUR.CLASS.SIZE

"* PROI.POSTEALTHCONTROLLER.SIZE

The modified entry is returned.

The following handlers (if registered) can be invoked before this routine returns:

"* new -.entry- event-_handler (see Section 4.6 (new'entry'event'handler], page 9)

"* entry- changed-event.-handler (see Section 4.7 [entry'changed'event'handler], pag,. 10)

"* new.obj ect -event._handler (see Section 4.9 [new'object'event'handler], page 10)

"* object-changed.-event..handler (see Section 4.10 [object'changed'event'handler], page 11)

If another simuiator changes this object at the same time,
the object -change.failed.- event -handler (see Section 4.12 [object'change'failed'event'handler],
page 12) may also be called soon after.

A NULL return value indicates an error occured.

6.9 po.change.object..missingfJlag

PO.DBENTPY *po-.change.obj ect-missing.-flag(db, entry,
missing.from-world-stat.e)

PODATABASE *db;
PODB.ENTRY *entry;
uint32 miss ing.from.vorld-state;

po-change.obj ect.'missing.flag attempts to modify the missingFromWorldState flag of the
object described in the passed entry with respect to the current world state of the database as set
by pouset.-world.sstate. It will create a new entry if the object has not yet been duplicated into
this world state (see Section 9.1.4 [World State], page 49).

The modified entry is returned.

The following handlers (if registered) can be invoked before this routine returns:

n Chapter 6: Functions 25

I
a entry- changed- event.-handler (see Section 4.7 [entry'changed'event'handler), page 10)

1 e new- entry.-event -handler (see Section 4.6 lnew'entry'event'handler], page 9)

* new.object.-event.-handler (see Section 4.9 [new'object'event'handler], page 10)

e object -changed- event -handler (see Section 4.10 [object'changed event'handler), page 11)

o object-gone.event.handler (see Section 4.11 [object'gone'event'handler], page 11)

i If another simulator changes this object at the same time,

the obj oct-change.f ailed- event .handler (see Section 4.12 [object'change'failed'eventh an dier].

page 12) may also be called soon after.

A NULL return value indicates an error occured.

6.10 po.change.entry

i PODB.ENTRY *po.change.entry(db, entry, variants, variant-size)
PODATABASE *db;
PODBENTRY *entry;
char *variants;
uint32 variant-size;

i po-change.entry attempts to modify the passed entry. Do not change

ExerciseInitial.izerClass objects using this routine (call po-set.exercise. initialization
(see Section 6.39 (po'set'exercise'initiaization], page 39).

The variants part is a pointer to a structure of type: WorldStateClass, OverlayClass,
PointClass, etc. The variant-size can be found using the following p.size.h macros:

In e PROPO.-WORLDSTATECLASSSIZE

e PROPO.OVERLAYCLASSSIZE

e PROPO.POINTCLASSSIZE

* PROPOLINECLASSSIZE

a PROPOSECTORCLASSSIZE

9 PROPO-TEXTCLASSSIZE

e PROPOUNITCLASSSIZE

e PROPOHHOURCLASSSIZE

I
I

26 LibPO Programmer's Guide

"* PROP0.STEALTHCONTROLLER-SIZE

The modified entry is returned.

The following handlers (if registered) can be invoked before this routine returns:

"* entry- changed-.event-handler (see Section 4.7 [entry'changed'event'handler], page 10)

"* new-object._eventhandler (see Section 4.9 [new'object'event'handler], page 10)

"* obj ect.gone.event -handler (see Section 4.11 fobject'gone'event'handler], page 11)

If another simulator changes this object at the same time,
the object.change-f ailed- event.-handler (see Section 4.12 [object'change'failed *event'handier],
page 12) may also be called soon after.

A HULL return value indicates an error occured.

6.11 po.change-entry..nissing-flag

PODBENTRY *po-change-entry-missing-flag(db, entry, missing.from.world.state)
PODATABASE *db;
PO.DBENTRY *entry;
uint32 miss ing_.from.vorlds.tate;

po.change-entry.missing.flag attempts to modify the missingFromWorldState flag of the
passed entry.

The modified entry is returned.

The following handlers can be invoked before this routine returns:

"* entry.-changed-event.-handler (see Section 4.7 [entry'changed'event'handler), page 10)

"* new.object.event.handler (see Section 4.9 [new'object'event'handlerJ, page 10)

"* object.changed- event -handler (see Section 4.10 [object'changed'event'handler], page 11)

"* object -gone-.eventhandl er (see Section 4.11 [object'gone'event'handier], page 11)

Chapter 6: Functions 27

If another simulator changes this object at the same time,

the obj ect-change-failed- event.-handler (see Section 4.12 [object'change'faled event'handler).

page 12) may also be called soon after.

A NULL return value indicates an error occured.

I
6.12 po.copy-object.Jnto-ws

I PO.DBENTRY *po.copyobject_into.vs(db, entry, into.-orld.state)
PODATABASE *db;
PODBENTRY *entry;
Obj ectID *into-world.sstate;

po- copy- objectjinto.vs attempts to duplicate the information specified in the entry into a

version of that entry in the specified into.-vs. If the object described by the entry already exists

in the specified world state (see Section 9.1.4 [World State], page 49), the existing entry will be

modified, otherwise a new entry will be created.

The new or modified entry is returned.

The following handlers (if registered) may be invoked before this routine returns:

* neowentry- event -handler (see Section 4.6 [new'entry'event'handler], page 9)

* entry- changed.event -handler (see Section 4.7 [entry'changed'event'handler], page 10)

* nev.object.-event. handler (see Section 4.9 [new'object'event'handler], page 10)

* obj ect-changed-event -handler (see Section 4.10 [object'changed'event'handler], page 11)

e object -gone- event-handler (see Section 4.11 (object'gone'event'handler], page 11)

If another simulator changes this object at the same time,

the obj ect.change-f ailed- event -handler (see Section 4.12 [object'change'failed*event*handler],

I page 12) may also be called soon after.

A NULL return value indicates an error occured.

I
6.13 p o..set..o bject...user...data

I
I

28 LibPO Programmer's Guide

void po.se.tobject_user.data(db, entry, val)
PO.DATABASE *db;
PO.DBENTRY *entry;
PO.USER.DATA.TYPE val;

po.set-object-.user.data routine sets the object.user.data to the passed value for all en-

tries describing this object. The object user data of any entry regarding the same object can be

found in entry->obj ect.user.-data.

This function returns no value.

6.14 po.entry.owner

char *po.en.try.owner(db, entry)
PO.DATABASE *db;
PO.DB.ENTRY *entry;

po.entry..owner returns a pointer to the name of the host which currently owns the entry.
This can be used by an application objoect- change.-failed.event.-handler (see Section 4.12 job-
ject'change'failed'eventfhandler], page 12) to identify which machine changed the object.

6.15 po..simulator-name

char *po.shiulator.name(db, address)
PO.DATABASE *db;
SimulationAddress *address;

po.simulatoruname returns the name of the host with the specified address.

6.16 po-find -simulator

PODB.ENTRY *po.-findusimulator(db, address)
PODATABASE *db;
SimulationAddress *address;

Chapter 6: Functions 29

m
po-find-siulator returns a PODBENTRY containing a simulatorPresentPDU corresponding

to the host with the specified address. If there is no host with the specified address acting as an

active user of the PO database, NULL will be returned.

I
6.17 po.delete-object

i int po.deleteoobject(db, entry)
PODATABASE *db;
PO.DBENTRY *entry;

po-delete-object routine deletes the specified object from the database.

The following handlers (if registered) can be invoked before this routine returns:I
* entry-gone-event.-handler (see Section 4.8 [entry'gone'event'handler], page 10)

* new.obj ect -event.-handler (see Section 4.9 [new'object'event'handler], page 10)

* object- changed-event.-handler (see Section 4.10 [object'changed'event'handler], page 11)

* object-gone-event.-handler (see Section 4.11 [object'gone'event'handler], page 11)

world-state-ochangod-event-.handl.er (see Section 4.15 [world'state'changed'event'handler],
page 13)

U A NULL return value indicates an error occured.

I
I 6.18 po.delete.objects

int32 po.delete.-objects(db, nentries, entries)
PODATABASE *db;
int32 n-entries;
PODBENTRY *entriesQ ;

I po-delete.objects deletes the specified objects from the database.

The following handlers (if registered) can be invoked before this routine returns:

5 * entry-gone -event -handler (see Section 4.8 [entry'gone'event handler], page 10)

9 new- objoct.._ovent-_handler (see Section 4.9 [new'object'event'handler], page 10)

I
I

30 LibPO Programmer's Guide

* obj ect -changed.-event _handl or (see Section 4.10 [object'changed'event'handler], page 11)

* obj ect _gone- event-handler (see Section 4.11 jobject'gone'event'handler], page 11)

w vorld- st ate.a-changed- event -handler (see Section 4.15 [world'state'changed'event'handier],
page 13)

A NULL return value indicates an error occured.

6.19 po.delete-entry

int32 po-delete.entry(db, entry)
PODATABASE *db;
PODBENTRY *entry;

po-delete-entry deletes the specified entry from the database.

The following handlers (if registered) may be in-voked before this routine returns:

* entry-gone-.event.-handler (see Section 4.8 [entiy'gone'event'handler], page 10)

Sneoobj ect..event-handler (see Section 4.9 [new'object'event'handler], page 10)

* object .changed- event -handler (see Section 4.10 (object'changed'event'handler], page 11)

* object -gone- event.-handler (see Section 4.11 [object'gone'eventfhandler], page 11)

e world-state- changed- event-handler (see Sp,.tion 4.15 [world'state'changed'event'handler],
page 13)

A NULL return value indicates an error occured.

6.20 po-delete-entries

int32 po.delete.entries(db, n-entries, entries)
PO.DATABASE *db;
int32 n.entries;
PO.DB_"ENTRY *entries];

po-deleteentries deletes the specified entries from the database.

The following handlers (if registered) may be invoked before this routine returns:

Chapter 6: Functions 31

I
* entry.gone.event -handler (see Section 4.8 [entry'gone'event'handler], page 10)

I new.object._event._handler (see Section 4.9 [new'object'event'handler], page 10)

* objact1-_changed- event..handler (see Section 4.10 [object changed event'handler), page 11)

i object -gone-.event -handler (see Section 4.11 [object'gone*event handler], page 11)

vorld- st at ea-changed- event-handler (see Section 4.15 [woredstate cha.nged'event handler],

page 13)

A NULL return value indicates an error occured.I
6.21 po.get.entry

P0_DB.ENTRY *po-get-entry(db, object..id, vorld.state.id)
P0_DATABASE *db;
ObjectlD *obj ect. id;
ObjectID *vorld.state.id;I

po-get._entry looks up the specified objectID/worldStateID pair and returns the associaod
i entry.

A NULL return value indicates the entry was not found.I.
6.22 po-get-object

P0_DB.ENTRY *po-get-object(db, object-id)
PODATABASE *db;
ObjectID *object._id;

po.get.object looks up the specified objectID in the current world state (see Section 9.1.4
['World State], page 49) of the database as set by po-set..worlds.state and returns the associated

i object.

A NULL return value indicates the object was not found.

I 6.23 poo-query.for-current-objects

I

32 LibPO Programmer's Guide

void po-query.for-current-objects(db, query.handler, query.user.data)
PO_ DATABASE *db;
POEVENT.HANDLER query-handler;
POUSERDATATYPE query-user.data;

po-query-for.current1_objects invokes the query-handler on each object relevant to the
current world state(see Section 9.1.4 (World State], page 49). Note that it is not safe to delete
objects in the query-handler routine. Instead, an application should compile a list of objects to
delete and delete them all with po-delete.objects.

This function returns no value.

6.24 po-query-for-.al!entries

void po-query-for.all-entries(db, query-handler, query.user.data)
PO.DATABASE *db;
POEVENTHANDLER query-handler;
PO.USER.DATATYPE query.user.dataa;

po-query.for-all.entries invokes the query-handler on every entry with a pdu of type
describe0bjectMlU. Note that it is not safe to delete entries in the query-handler rou-
tine. Instead, an application should compile a list of entries to delete and delete them all with
po-delst ete.entries.

"T .-anction returns no value.

6.25 poo-set.world -state

int32 po-set..world.state(db, entry)
PODATABASE *db;
PODBENTRY *entry;

po-set.-world-state attempts to set the current world state (see Section 9.1.4 [World State],
page 49) of the database to that described in the passed entry. Passing NULL as the entry indicates
the Real Time world state.

Chapter 6: Functions 33

I
The default world state is the Real Time world state. The current world state entry can be

found in db->current -vorld-s.tate (which will be NULL if in the Real Time world state). The

objectlD of the current world state can be found in db->current-world-state-id.

The following handlers (if registered) can be invoked before this routine returns:

e new.object -event.-handler (see Section 4.9 [new'object'event'handler], page 10)

e obj ect.changed- event -handler (see Section 4.10 [object'changed'event'handler], page 11)

e object.-gone- event.handler (see Section 4.11 [object'gone'event'handler], page 11)
* world.state.changed-event.handler (see Section 4.15 tworld'state'changed'event handler],

page 13)

A NULL return value indicates an error occured.I

6.26 po..-start-.network.animation

I int32 po.start'.network.animation(db, vorld-state,
secondsSince1970, clock-rate)

PODATABASE *db;
Obj ectID *world.st ate;
uint32 secondsSincel970;
float32 clock-rate;

po- start -network.animation sends a SetWorldStatePDU onto the network with the specified
data, and keeps sending the PDU periodically until explicitly stopped via

po_-utop-network-anization.

A NULL return value indicates an error occured.

I
6.27 p o -stop..n etwork.anim ationI

int32 po-s.top-network..animation(db, world.state, secordsSince1970)
PO.DATAASE *db;
Obj ectID *worldst ate;
uint32 secondsSince1970;

I
I

34 LibPO Programmer's Guide

po.stop.netvwork.ani-ation sends one last SetWorldStatePDU with the specified world.state m

(see Section 9.1.4 [World State], page 49) and time and a clock rate of 0.0, and stops the periodic

retransmission of the last SetWorldStatePDU.

A NULL return value indicates an error occured.

6.28 po-find -b ase-world-state •

PO.DB.ENTRY *po_.ind.base-world.state(db, entry, skip.entry)
PODATABASE *db;
PO.DB.ENTRY *entry;
P0_DBENTRY *skip-entry; 3

po.find.base.world.state is a convenience function which attempts to locate the world state
(see Section 9.1.4 [World State], page 49) on which the passed world state entry is based. If non-
null, entries will be checked against skip.entry in the search (this is provided as a convenient way
to deal with deletion), and will not be chosen if they match.

A NULL return value indicates no base state was found.

6.29 po.find.overlay

PO.DB.ENTRY *poiind.-overlay(db, entry)
PODATABASE *db; I
PODB.ENTRY *entry;

po.-find-overlay is a convenience function which attempts to locate the overlay to which an
entry belongs.

A NULL return value indicates the overlay was not found. I
6.30 po.object-color

uint8 po.object.color(db, entry)
PODATABASE *db;
PODBENTRY *entry;

I
______• m •I

Chapter 6: Functions 35

po.object.color is a convenience function which returns the correct color code for the passed
entry. It looks up the overlay of the entry if the entry color is OCOverlayDefault.

A NULL return value indicates the overlay was not found.I
6.31 po-clear-change-flags

void po.clear.change.flags (unit)
UnitClass *unit;

po-clear.change-.flags is a convenience function which clears all the change flags in a unit
class object (changeLocation, changeDirection, etc.).

I
6.32 po-save-all

int32 po.save..all(db, fname, save-scratch, save.realtime,
save-non-realtime)

PO.DATABASE *db;
char *fname;

int32 save.scratch;
int32 save.realtime;
int32 s ave-non-realtime;

ipo-saveall saves all world states, overlays, and other objects into a file named fname. If

save-scratch is FALSE, scratch overlays and their members will not be saved. If save-realtime
is FALSE, objects which have a world state (see Section 9.1.4 [World State], page 49) (i.e., anything

other than overlays and world states) which are in the Real Time world state will not be saved.
If save.non-realtime is FALSE, objects which have a world state which are not in the Real Time

i - world state will not be saved. Setting save.realtime to FALSE is useful for saving only Courses of
Action (see Jibcoa). Setting save.non-realtize to FALSE is useful for saving a scenario containing
multiple overlays which exists only in the Real Time world state. po.save.all returns the number
of objects saved.

A NULL return value indicates an error occured.

i 6.33 po-..save-overlay

I
I

36 LibPO Programmer's Guide

ixn32 po.save.overlay(db, fname, overlay, claas..ask) I
PO.DATABASE *db;
char *fname;
PO.DB.ENTRY *overlay;
uint32 class.mask;

po.save.overlay saves the current world state (see Section 9.1.4 (World State], page 49) of all

objects with classes indicated by clas.smask into a file named fname, provided those objects are

in the passed overlay, or are associated with an object in the passed overlay. po.save.overlay I
returns the number of objects saved.

The class.mask is a bitmask which indicates which object classes should be saved. For example, 1
to save only points and lines, use:

(POCLASSKASK(objectClassPoint) I PO.CLASS.-ASK(objectClassLine)) I
POFULL..CLASSMJASK will allow all classes to be saved (except world states and other overlays,

which are automatically eliminated).

A NULL return value indicates an error occured. I

6.34 po.Joad-file

in-32 po.loadfjile(db, fname,
overlay.-confirmation-.handler,
overlay.confirmation-user.data)

PODATABASE *db;
char *fname; I
PO.OVERLAYCONFIRMATION.-HANDLER overlay-confirmation.handler;
POUSERDATATYPE overlayconlfirmation.user-data;

po.load.f ile loads the file named fname. Each overlay in the file is checked with the
overlay-confirmation.handler to confirm that the application can accept it. If any errors

occur during the load (including a failed overlay-confirmation) no objects will be created.

po.load..file returns the number of objects loaded.

If the file was created with po-save.all, new world states (see Section 9.1.4 :World State],

page 49) will be created to replicate the ones saved, and objects will be put into those world states

(objects saved from the Real Time world state will be merged into the Real Time world state at

I
I

Chapter 6: Functions 37

load time). If the file was created with po.save-overlay, the objects will be merged into the
current world state of the database as set by po.se-w.orld.state.

The following handlers (if registered) can be invoked before this routine returns:I
o nav-entry- event.-handler (see Section 4.6 [newentry'event'handler], page 9)

e entry- changed.-event -handler (see Section 4.7 [entry'changed'event'handler], page 10)

* new.obj ect .event -handler (see Section 4.9 [new'object'event'handler], page 10)

e object-.changed.event..handler (see Section 4.10 [object'changed'event'handler], page 11)

e object.-gone-eventhandlor (see Section 4.11 [object gone'event'handler], page 11)

A NULL return value indicates an error occured.

I
6.35 po-new-stealthI

void po-neo.stealth(db, vehicleID)
PODATABASE *db;
ObjectID *vehicleID;

* An application should call po.new.s.tealth whenever a new Stealth vehicle appears in the
SIMNET Stealth Protocol. libpo will determine whether a new stealthControllerClass object
is needed, and will create one if necessary.

This function returns no value.I
I - 6.36 po-control-stealth

po.control.stea.alth(db, vehiclelD, target.-sinula.or)
PO.DATABASE *db;
ObjectlD *vehicleID;I P0_DB.ENTRIY *target.simulator;

po.control-stealth modifies the stealthControllerClass object regarding the identified
stealth vehicle. It sets the controller field to the address of the target host. If target-simulator

is NULL, the address used is that of the local host.

U
I

38 LibPO Programmer's Guide

This function returns no value.

The following handler (if registered) can be invoked before this routine returns: I

project -event. handler (see Section 4.18 [project'event'handler], page 15)

!
6.37 po.time

uint32 po..time(db) U
PODATABASE *db;

po.-time returns the current millisecond clock time of the shared database. Successive calls to
po.-time are not guaranteed to grow larger, and this dock is not an accurate measure of elapsed
time. However, simultaneous calls to potime on different simulators should yield approximately
the same result (the master will lead the slaves by an amount equivalent to minimum network
latency). It is appropriate to use po.time for comparisons with objects of class HHour.

I
6.38 po-get.exercise-initialization

ExerciseInitializerClass *po-get-exercise-.nitialization(db) U
PODATABASE *db;

po.goet.oxerciseu.nitialization returns the current exercise initialization information as
contaýed in the object of the ExerciseInitializerClass. In order that libpo guarantee
that - re is at most one object of this class, objects of this class should be created only by
po-s .3xerciseejnitialization (see Section 6.39 [po'set'exercise'initialization], page 39). If
no object of this class exists in the database, a nominal value containing static default information
will be returned.

I
6.39 p o set-exercise Jnitialization

void po-set.exercise_.initialization(db, data)
PODATABASE *db;
ExerciseInitializerClass *data; !

I
-- -- - -- - • -,,,,,, ,,,,,,,,, m m u mm mI

Chapter 6: Functions 39

I
po.set.exercise..xnitialization sets the current exercise initialization information by creat-

ing or changing the object of the ExerciselnitializerClass. In order that libpo guarantee that
there is at most one object of this class, this function should solely be used to create or change this
object. po.createoobject (see Section 6.6 [po'create'object], page 21), po.change-entry (see Sec-
tion 6.10 [po'change'entry], page 25), and po-change.object (see Section 6.8 [po'change'object],
page 23) should not be used to manipulate objects of the ExerciseInitializer class.

po-set.exercise.initialization may be called only on active databases (see Section 9.1.2
[Active Simulator], page 49).

6.40 po-delete.exercise-initialization

void po.delete.exercise.initialization(db)
PO.DATABASE *db;

po-delete_ exercise-initialization deletes the current exercise initialization information,
if such information exists. This is performed by deleting the current object of the
ExerciseInitializerClaas, if it exists.I
6.41 po-get-simulationJoad

float32 po.get.simulation.load(db)
PO.DATABASE *db;

poget..simulation.load returns the value of the current simulation load. Simulation loadI is an application defined quantity associated with all active (see Section 9.1.2 [Active Simula-
tor], page 49) databases and corresponds with a simulator's quantity of simulationProtocol enti-
ties. Simulation load is set for local simulators via po.set._simulationload (see Section 6.42
[po'set'simulationiload], page 40) and can be retrieved for databases in remote simulators via the
simulationLoad field of the simulatorPresentPDUin entries corresponding to simulators (see Sec-I tion 4.4 [new'simulator'event'handler], page 8). Simulation load is nominally between 0.0 and 1.0,
with 1.0 representing maximum rated load. An overloaded simulator will have a simulation load

* greater than 1.0.

I 6.42 poo-set-simulationJoad

I
I

40 LibPO Programmer's Guide

void po.set.simulation.load(db, val) I
PO.DATABASE *db;
float32 val; 5

po.set-simulation-load sets the value of the current simulation load for the passed database.

See Section 6.41 (po'get'simulation'load], page 39 for a definition of simulation load.

I
6.43 poJeast..simulationJoaded-simulator

PO.DBENTRY *poleast-simulation-loaded-simulator(db, simtype, excluded_sim)
PO.DATABASE *db;
SimulatorType Sim-type;
SimulationAddress *excluded.sim;

po-least..simulation.loaded-simulator returns an entry containing a

simulatorPresentPDU corresponding to the simulator of the given SimulatorType that has the

lowest simulation load (see Section 6.41 [po'get'simulation'load], page 39 for the definition of simu-

lation load). If excluded.usim is not NULL, the simulator corresponding to that simulation address

will be excluded from consideration. It is likely, but not guaranteed, that all active (see Section 9.1.2

[Active Simulator], page 49) simulators in an exercise will agree on what simulator is least loaded

at a given instant in time.

I
I
I
I
I
I
U
I
I

Chapter 7: Macros 41

7 MacrosI
The sections below describe the libpo macros by including a synopsis and a description.I

7.1 POCLASS...MASK

uint32 POCLASSMASK(obj ectClass)
PersistentObjectClass objectClass;

POCLASS.MASK generates a bit mask to select the passed objectClass for calls to the function,
po-save-overlay.

7.2 PO.FULLCLASSMASK

uint32 P0_FULLCLASSMASK

SPOFULLCLASSMASK generates a bit mask to select all object classes for calls to the function,
po-save-overlay.

7.3 POOBJECT..DESCRIBE

DescribeObj ectVariant POOBJECTDESCRIBE

POOBJECTDESCRIBE extracts the objects DescribeObjectVariant for the entry's most recent
DescribeObjectPDU.

I ~ 7.4 PO-OBJECTCLASS

uns igned char PO-OBJECTCLASS (entry)
PO.DBENTRY *entry;

I POOBJECT.CLASS extracts the object class from the entry's pdu.

I
I

42 LibPO Programmner's Guide

7.5 PO-.OBJECT-ID

Obj ectID PO..OB3ECT-.ID(entry)
PO..DB..ENTRY *entry;

PQ..OBJECT-ID extracts the objectlD from the entry's pdu.I

7.6 PO..WORLD..STATE-DATA

Wol~tt~ls P-ORDSTT-DT(entry)
PO..DB.ENTRY *entry;

PO..WORLD-.STATE..DATA extracts the WorldStateClass variant from the entry's PDU.

7.7 PO..OVERLAYJ)ATA

OverlayClass PO..OVERLAY-DATA (entry)
PO..DB..EJTRY *entry;

PO..OVERLAY..DATA extracts the OverlayClass variant from the entry's PDU.

7.8 PO-POINT-DATA

PointClass PO..POINT-DATA(entry)
PO-.DB-.ENTRY *entry;I

PO-POINT-DATA extracts the PointClass variant from the entry's PDU.

7.9 PO..LINE..DATA

LineClass PO..LINE..DATA (entry)I

PO..DB..ENTRY *entry;

PO..LINE..DATA e xtracts the LineClass variant from the entry's PDU.

Chapter 7: Macros 43

7.10 PO..SECTOR-DATA

SectorClaui PO..SECTOR-.DATA (entry)
PO..DB-.ENTRY *entry;

PCLSECTOR..DATA extracts the SectorClass variant from the entry's PDTJ.

7.11 PO-TEXT-.DATA

TextClass PO..TEXT..DATA~entry)
PO-.DB-.ENTRY *entry;

PO-.TEXT-.DATA extracts the TextClass variant from the entry's PDU.

I ~7.12 PO..UNIT..DATA

I ~UnitClass PO..UNIT..DATA (entry)
PO..DB-.ENTRY *entry;

I ~PO..UNIT..DATA extracts the UnitClass variant from the entry's PDU.

7.13 PO-HHOUR..DATA

HHou~rClass PO-..HOUR-.DATA (entry)I ~PO..DB-.ENTRY *entry;

PaJIHOUR-DATA extracts the HHourClass variant from the entry's PDU.

7.14 PO-STEALTH-.CONTROLLERJ)ATA

StealthControllorClass PO..STEALTH..CONTROLLER..DATA (entry)I ~PO-.DB..ENTRY *entry;

44 LibPO Programmer's Guide

PO..STEALTHLC0NTROLLER-DkTA extracts the StealthControll erCl ass variant from the entry's

PDU.

7.15 PO-.TASK-DATA

TaskClass PO-.TASK-.DATA (entry)I
PO_.DB..ENTRY *entry;

PO-.TASK..DATA extracts the TaskClass variant from the entry's PDU.

7.16 PO..TASKSFRAMEJ)ATA

TaskFrameClass PO-.TASK..FRAMkE..DATA (entry)
PO-.DB..ENTRY *entry;

PO J.ASK -FRAME-.DATA extracts the TaskFrameClass variant from the entry's PDU.

7.17 PO-YARAMETRIC-INPUT-.DATA

ParametriclnputClass PO..PARANETR.IC..INPUT-.DATA (entry)
P0 .DB..ENTRY * entry;I

PO..PARAMETRC.INPUT_.DATA extracts the ParametriclnputClass variant from the entry's
PDU.

7.18 P0 -PARAMETRIC -INPUT J1OLDER.D ATA

ParametriclnputHolderClass PO..PARAMETRIC..INPUT..HOLDER-.DATA
PO..DB-.ENTRY *entry;I

PO-.PARAMETRIC..INPUT..HOLDER-DATA extracts the ParametriclnputliolderClass variant from
the entry's PDU.

Chapter 7: Macros 45

7.19 PO-.EXERCISEJNITIALIZER-.DATA

IExerciz.Initial~izerClass P-XRIEIIILZRDT
PO-.DB..ENThY *entry;

P-EXERCIjSE- INITIALIZER-DATA extracts the ExerciselnitializerClas s variant from the

enr'sIU

46 LibPO Programmer's Guide

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I

I Chapter 8: Using Xtest 47

I
8 Using XtestI

The test program xtest creates four windows, each representing a host on a simulated network.
The simulated network has latency and errors just like a real network (although the simulated
network makes more mistakes, to help find problems with libpo). Error messages are output to
stdout of the controlling terminal.

There are the following Control Buttons:

Network: This toggle button attaches and detaches the simulated network cable from this simu-
lated host.

New Overlay:

Click left on this button to create a new overlay. Overlays have names like <#> and
cycle through the 5 overlay colors.

COA: Toggle the COA button to post/unpost the Course Of Action editor. Using the COA
editor, you can create new world states (see Section 9.1.4 [World State], page 49),
delete world states, set the world state of the simulated host and do animation (either

privately or on the simulated network). Full documentation of the COA interface can
be found in libcoa/README.

Save All: Click left on this button to save everything in the shared database into a file called
S~ "all'.

Load All: Click left on this button to load the file called "all" into the shared database.

* Load Overlay:

Click left on this button to load the file called "overlay" into the shared database.

* Delete All:

Click left on this button to delete everything in the shared database.

SQuit: Click left on this button to exit this host's simulation. To stop xtest, hit -C in its
controlling window.

* There are the following Display Areas:

Objects: At the top of each host display is a space where created objects are placed (the objects
are class text with randomly chosen positions and sequentially chosen text like letter).
Clicking left on an object changes it with respect to the current world state of the
host. Clicking middle on an object removes it from the current world state of the host.
Clicking right on an object deletes it entirely.I

I

48 LibPO Programmer's Guide

Overlays: Listed here are all the overlays in the system. Clicking left on one of these overlay

buttons creates a new object in that overlay. Clicking middle on an overlay saves it in

a file called "overlay". Clicking right on an overlay button deletes that overlay (and

everything in it).

Known Simulators:

Listed here are all the known active simulators (see Section 9.1.2 [Active Simulator],

page 49) on the simulated network.

Info: Below the simulators is the information display. Sliding the mouse pointer over any

object updates this display with the objectID, worldStateID, sequence number, and

owner of the object.

The following are the recommended X resources:

"* POTest*foreground: Black

" POTest*background: Silver

"* POTest*fontList: *helvetica-medium-r-normal-18*

"* POTest*XmText*traversalOn: True

"* POTest*traversalOn: False

"* POTest*highlightOnEnter: False

e POTest*highlightThickness: 0 I
I
I
U
I
I
I
I

IChapter 9: Protocol Specification 49

I
9 Protocol Specification

This section describes the Persistent Object Protocol. The information in this section is di-
rectly used by automatic scripts to generate DRN files which can generate machine readable and
compilable descriptions of PDUs.

9.1 Terms

The following terms are essential for understanding the specifics of the Persistent Object Pro-
I tocol:

9.1.1 Simulator

A Simulator is any machine on the network which handles packets (such as a workstation).

1 9.1.2 Active Simulator

An Active Simulator is a machine which is an active user of the Persistent Object Protocol.
An active simulator may change the state of any Persistent Object. Active simulators have certain
other responsibilities, including taking over object for simulators which go down. Active simulators
are required to maintain a complete database, even if some object classes are always ignored by

the simulator's application.

1
9.1.3 Passive Simulator

A Passive Simulator is a machine which is a passive observer of the Persistent Object Protocol.
A passive simulator may not directly change the state of any Persistent Object. A passive simulator
may keep an incomplete database including only those objects its application finds interesting.

I 9.1.4 World State

A World State is a snapshot of a set of objects at a particular time. World states have the
following characteristics:I

1

50 LibPO Programmer's Guide

I
"* To reduce storage requirements, world states are represented by a base state augmented by a

series of deltas. Hence, when a new world state is created, it includes an ordered reference to

all previous states upon which it was built.

"* In order to display a particular world state, a search is necessary to find the correct represen-
tation for each object in the world. I

"* A world state may depend on any other world states which occur before or after it in time. In
this way alternate futures and histories can be developed from one base state.

"* Many world states may exist for a particular time.

"* A new world state may exist on its own, depending on no other world states. Such world states
should not be created unless absolutely necessary, since they lead to a rapid proliferation in

the number of objects on the network.

9.1.5 Valid 3
An object is Valid ouly if all components of that object are reasonable. An line in an unknown

overlay, for example, is invalid. The rules for dealing with invalid objects are explained for each

object class.

9.2 Protocol Requirements I

TUe OBG workstations require an environment in which objects can be shared and are robust.
A protocol to support this environment must fulfill the following requirements:

"* The number of objects in the system must be v..iable with a very high limit (in the thousands). I
"* The protocol used to communicate objects must work as a SIMNET protocol family, despite

high packet loss rates. I
"* If at all possible, a simulator crash should not lead to the loss of the objects created on that

simulator. 1
"* Any simulator should be able to modify or delete any object.

"* The protocol should be capable of representing different possible World States (see Section 9.1.4 1
[World State], page 49) simultaneously.

"* Any object represented with this protocol must be completely transparent (i.e., it must have
no state information which is not represented or derivable from the information in protocol I
packets). I

I

Chapter 9: Protocol Specification 51

The protocol used to share overlays between OBG workstations must fulfill the following re-

quirements:

o Items on an overlay include points, lines, possibly other types of graphics, unit symbols.

o Task organization between unit symbols on an overlay must be represented in a machine-
readable format.

9 Enough information (such as a formation template) must be specified with each unit up to
battalion echelon to represent its vehicles via SIMNET appearance PDUs.

o Enough information (such as a specific SIMNET echelon object type) must be specified with
each unit up to battalion echelon to replicate it in a SAF simulation.I

U 9.3 Protocol Definition

I The Persistent Object Protocol is an application layer protocol between the SUVINET Association
layer and a small sub-protocol which describes the classes and content of objects. This sub-protocol
is transmitted as the data part of Describe Object PDUs. Describe Object PDUs also have a header
which is used by the Persistent Object layer to maintain its database of objects. The interface to
this protocol will be a library similar in nature to the Association Layer library.

All PDUs in this protocol should be transmitted using the Association Layer Datagram Service.

The Persistent Object Protocol has an exercise identifier which works the same way as a Sim-
iulation Protocol exercise identifier. It is expected that a simulator which is supporting Simulation
Protocol and Persistent Object Protocol simultaneously will use the same exercise ID for both.

I In addition, there is a database identifier field which can be used to further subdivide an exercise
into several independent PO databases. This can be used, for example, to keep separate databases
for SAF command and control, dynamic terrain, and environmental information. Each logical
database has a unique space of Object IDs, so no references can be made between objects in

* separate databases.

The DRN definition of the top-level PDU can be found at the end of this specification.

N
NOTE: All maximum sizes assume a maximum datagram size of 2040 bytes.

I
I

52 LibPO Programmer's Guide 3
I

9.3.1 Simulator Present PDU

Each simulator which is on the network which interacts with other simulators using the Persistent

Object Protocol will broadcast a Simulator Present PDU every 20 seconds. This PDU acts as

a heartbeat indicating that the simulator is running. The load field is used to encourage load

balancing if the simulator goes down. I
The time field is used to provide a consistent relative time across all simulators, for the exclusive

use of Persistent Objects. When a simulator gets a time from another simulator's Simulator Present
PDU which is larger than the time currently known to the simulator, the receiving simulator should
immediately adopt that time. This time can be used as a base for other times (such as H-hour).
When a simulator increases the database sequence number, it should reset this time to zero. Upon
transitioning to a higher database sequence number each simulator should reset its own time to

zero as well.

The databaseSequenceNumber field is used to facItate a "delete all" procedure. Each simulator
identifies in its Simulator Present PDU the current sequence number of the database. All objects I
with database numbers less than this number are invalid (see Section 9.1.5 [Valid], page 50). Upon
receipt of a Simulator Present PDU, the receiving simulator should check the sequence number field
against its own. If the number is lower, the receiving simulator should immediately retransmit its
own Simulator Present PDU to ensure that the errant simulator is aware of the correct number. If
the number is higher, the receiving simulator must delete all objects from its database, and adopt
the new number as the correct version; it should then transmit a new Simulator Present PDU in
reply. Until a simulator hears otherwise, it should assume the correct sequence number is zero. A

simulator should immediately adopt the database sequence number in the first Simulator Present I
or Describe Object PDU it hears, provided that number is greater than the number it currently
believes. Thereafter, only Simulator Present PDUs should be used to inherit new database sequence

numbers.

To perform a "delete all" procedure, the deleting simulator should increment its own database I
sequence number, and immediately transmit a Simulator Present PDU. This is a drastic operation
which should not be taken lightly by applications. Password protection would be appropriate.

If no Simulator Present PDU is received for 48 seconds, the receiver with the lowest declared
load will take ownership of all the objects currently owned by the missing simulator. To ensure
some simulator will take ownership, those simulators not doing so will nominate the simulator which

they believe to have the lowest load. Procedures to negotiate between contenders for ownership are
described elsewhere in this document. I

I

Chapter 9: Protocol Specification 53

If a Simulator Present PDU describes a new simulator, the receiver should restart periodic

Describe Object PDU transmission for all objects which it owns, as though all the objects had just
been changed. This way, simulators joining an exercise late can learn the complete state of the
database without having to issue large numbers of Object Request PDUs.

constant simulatorPresentTransmitTime 20 seconds
constant simulatorPresentTimeoutTime 48 -- seconds

-- Longest at BBN is 25 charsSconstant maxSPHostnameLength 32

type SimulatorPresentVariant sequence {

I -- Identity of the simulator
simulator SimulationAddress,

I -- Resources provided by the simulator
simulatorType SimulatorType,

unused(16),

-- Identity of the shared database
databaseSequenceNumber UnsignedInteger (32),

-- Measure of simulator load =
-- (number of PO packets transmitted since last SimulatorPresentPDU) +
-- square(number of packets missed during that time)I load UnsignedInteger (32),

-- Simulation load is an application defined measurement of
-- a simulator's load of simulated entities. The measurement is
-- represented as a floating point number nominally between 0.0
-- and 1.0.. 1.0 represents 'full' rated loading, but a simulator
S-- may decide to simulate more than the full rated loading, thusI-- generating a load > 1.0. Typically, only simulators with
-- (simulatorType as simulator.LLSAFSIM) will use this
.-- to determine what simulators can and should simulate vehicles.
simulationLoad Float (32),

-- Milliseconds from time of last databaseSequenceNumber change
time UnsignedInteger (32),

-- PO Protocol Packets sent since last SimulatorPresentPDU
packetsSent UnsignedInteger (32),

-- Miscellaneous information for application level use
unitDatabaseVersion UnsignedInteger (16),

unused (16),
terrain TerrainDatabaseID,I

I

54 LibPO Programmer's Guide

-- UILL terminated hostuame
hostname array (maxSPHostnameLength) of

Unsignedlnteger (8)}I I
9.3.2 Describe Object PDU

A persistent object has the attributes that once created, it should continue to exist until deleted,
despite simulator failure or other catastrophic error. To create such an object, a simulator uses a

Describe Object PDU. After the header of this PDU is a sub-protocol which is used to describe
different classes of objects. This protocol is easily extensible to describe a great variety of things
which need this persistent behavior.

A persistent object can exist in many different states simultaneously. The collection of objects I
in a particular state is called a World State (see Section 9.1.4 [World State], page 49). There
is a special World State (with object ID 0/0/0) which is the Real Time state (the actual time
associated with this state is arbitrary, it may be a SIMNET simulated time). The Real Time
state is implicit and is not created by any simulator. This state does not depend on any other

world state, and no other world state may depend on it. The Real Time state is provided as a I
convenience for applications which do not need to manage multiple world states. All other states
are associated with a time which cannot be changed once the state is created. An application which
is not interested in supporting multiple world states, may ignore all objects with state other than
0/0/0 at the application layer. All active simulators (see Section 9.1.2 [Active Simulator], page 49)
are, however, required' to maintain the information regarding every object in the same exercise and
database ID.

An object is uniquely identified by the pairing of its object identifier and its world state identifier. I
Two objects which have the same object identifier but different world state identifiers represent
the same thing at two different times or in two different futures. An object is not valid (see
Section 9.1.5 [Valid], page 50) unless its world state is the Real Time world state, or some other
world state known to the receiving simulator.

All the different states of an object are maintained on the network, and it is up to the simulator
(really the user of the simulator) to decide which world state should be displayed. Changes to one
world state of an object impact the state of that object for that world state an.' all subsequent
world states for which no new state was recorded. If an application does not desire this behavior,

it may replicate the current object in all world states built from this state before changing the base i
object. I

I

Chapter 9: Protocol Specification 55

Invalid objects (objects which refer to other objects, which are not known to exist) may appear

on the network from time to time due to packet misordering, network latency, or missed packets.

When a new object appears on the network, it should be checked for validity. If it is not valid, it

may be ignored. However, if an object already in the database becomes invalid, it should not be

removed (see Section 9.1.5 [Valid], page 50).

I
9.3.3 Creating a Persistent Object

A persistent object is created by transmitting a Describe Object PDU with a unique Object ID.

I The simulator which creates a persistent object is the original owner of that object. The initial
sequence number of an object is 1. The owner is responsible for transmitting that object once every
30 seconds. In addition, the object is transmitted whenever it is changed. The sequence number is
incremented by the simulator whenever any information within the object is altered. A simulator
should disregard information received from the network if the sequence number is lower than that

currently stored in the simulator's memory.

After transmitting the same information regarding an object ten times (for five minutes), the
simulator should stop transmitting Describe Object PDUs regarding it and instead include its
object ID and sequence number in an Objects Present PDU. If there is a need to transmit a
Describe Object PDU regarding the object for any reason thereafter, it should be removed from
the Objects Present PDU.I
9.3.4 Creating a World State

* A world state (see Section 9.1.4 [World State], page 49) is one class of persistent object, therefore

declaring or changing a world state is done exactly the same way any other persistent object is
created or changed. However, for a world state to be meaningful, the objects which are considered

I important for that state must be identified. This is done by creating new objects with the same

object IDs, but different world state IDs.

I A simulator which creates a world state and knows of no other world states other than the
Real Time world state (which always exists, even in the absence of objects), will have to duplicate

every object which should be included, changing only the world state ID and resetting the sequence

number to 1 (and changing the owner, of course).U
U

56 LibPO Programmer's Guide

I
When a simulator creats a new world state, it must also create new objects for the graphics and

units which are considered relevant to that world state and which have changed state between that

world state and the most recent world state known to the simulator.

I
9.3.5 Changing a Persistent Object

A persistent object is changed by transmitting a Describe Object PDU regarding that object

with the new state information. Among the items in the Describe Object PDU header, only the

owner, sequence number, the simulation flag, and the missing flag may be changed after creating
an object. Other restriction may apply to the particular object classes, as well.

It is an applications responsibility to manage user interaction with objects (limiting access to 1
object created on other simulators, for example). The Object ID of an object does identify its

creator. Note, however, that since a simulator may go down, an application which prevents users

from deleting objects created on other simulators may make it impossible to remove objects from
the system.

If a simulator other than the current owner wishes to change an object or take over ownership

to replace a down simulator, it can do so by changing the owner field in subsequent PDUs. The

simulator should immediately transmit the new information (along with the new owner field) with

an incremented sequence number, and then retransmit the new information once every 30 seconds

thereafter.

If a simulator receives a PDU regarding an object which it does not own, it should ignore the

PDU if the sequence number is less than that currently known, or if the sequence numbers are
the same and the owners are the same. OtherWise, if the sequence number is greater than that

currently known or the sequence numbers are the same and the owner has changed, it should take I
the new information.

If a simulator receives a PDU regarding an object which it currently owns the new information 1
may or may not be used, as follows:

"* If the received PDU has a sequence number higher than that currently known to the simulator,
the simulator must relinquish ownership of the object by accepting the new information.

"* If the received PDU has a sequence number equal to that currently known to the simulator,

the simulator will compare its own simulator address magnitude (SAM = host << 16 I site) to

that of the simulator claiming ownership, and if higher, will increment the sequence number I
and retransmit the currently stored information. I

I

Chapter 9: Protocol Specification 57

If no PDUs have been received regarding an object created on another simulator for 72 seconds,
each simulator should delete that object. Procedures for deleting objects are detailed below.

The various classes of objects are described next, followed by the DRN representation of the
Describe Object PDU.

I
9.3.6 Object Classes

I Object Classes include descriptions of world state (see Section 9.1.4 [World State], page 49),
overlays (which have a name, color, etc.), items on overlays such as points, lines, or unit symbols,
and other things which need to persist and have no particular owner.

To create an object of any class, follow the procedure described above for the creation of persis-I tent objects. Some classes of objects have restrictions regarding which fields may be changed after
creation. It is the applications responsibility to prevent these fields from changing.

9.3.6.1 World State Class

A world state (see Section 9.1.4 [World State], page 49) is made up of a uniquely identified time,
and the state of selected objects at that time. Included in a world state object is a text description,
and the sequence of world states upon which this is based. An empty history implies the state is
based only on an unspecified Real Time State. Only obiocts of the World State class may appear
in the history array.

Only the description of a world state object may be changed after it is first created.

Deleting a world state requires that all objects within that state be deleted.

constant maxWorldStateDescriptionLength 256
constant maxWorldStateHistoryLength 190

type WorldStateClass sequence {

-- NULL terminated description
description array (maxWorldStateDescriptionLength) of

m oUnsignedInteger (8),

-- Time of this frame

58 LibPO Programmer's Guide

I
secondsSincel970 UnsigpedInteger (32),

historyCount UnsiguedInteger (8),
unused (24),

history array (historyCount) of ObjectID

9.3.6.2 Overlay Class I
An overlay has name and color attributes, and is used to group other objects together for display

purposes. To simplify semantics, overlays may only be created in the real time world state (see

Section 9.1.4 [World State], page 49). While this prevents having an overlay change color or name
at a particular time, it is necessary to ensure that all objects within the same overlay share the
same overlay-inherited information. While scratch overlays (scratch flag is TRUE) are shared on
the network for persistence, an application should not display a scratch overlay created by another
workstation (objectID.simulator identifies the creator of an object).

Each overlay is tagged with a force ID which can be used to selectively filter display of overlays
belonging to the "other side." 3

Any attribute of an overlay may be changed after initial creation.

Deleting an overlay requires that all overlay objects within that overlay are deleted. I
type OverlayColor enum (8) {

OCOverlayDefault (0), -- Not valid in an Overlay Class
OCBlack (1),
OCYellow (2),
OCRed (3),
OCGreen (4),OCBlue (5)

I I
constant maxOverlayNameLength 22

type OverlayClass sequence { I

-- NULL terminated overlay name
name array (maxzverlayNameLength) of

UnsignedInteger (8),

I
I

Chapter 9: Protocol Specification 59

I
-- Defaulc color of objects on this overlay
color OverlayColor,
scratch Boolean,

unused (7),

-- Force associated with this overlay
forcelD ForcelD,

unused (8)I

9.3.6.3 Point Class

I A point has style, color, location, and direction attributes as well as the overlay into which the
point is grouped. If dashed is True, the style should be modified (if possible) to show the point in
a dashed fashion (used by the military to indicate that the information is uncertain).

A point is not valid (see Section 9.1.5 [Valid], page 50) unless its overlay is known to the receiving
simulator.

Any attribute of a point may be changed after initial creation, including its overlay.

type PointStyle enum (8) {
PSgeneral (1),
PScoordinating (2),
PScontact (3),
PScontrol (4),
PSfortification (5),
PSTAI (6). -- Target Area of Interest
PSNAI (7), -- Named Area of Interest
PSdecision (8)I}

type PointLocation sequence {
x Integer (32),
y Integer (32)I)

type PointClass sequence {

-- Overlay to which this point belongs3 overlayID Obj ectID,

style PointStyle,I
I

60 LibPO Programmer's Guide

I
color OverlayColor,
dashed Boolean,

unused (31),
location PointLocation,
-- Some points (such as a NAI) have an associated direction
direction Angle

}1

9.3.6.4 Line Class I
A line has style, color, thickness, and width attributes as well as the overlay into which the

line is grouped, the points that make up the line, a closed flag indicating that the first and last
point should be connected, and specification of arrow heads for each end. The use of line width

depends upon the style: a plain line with non-zero width should be drawn as two parallel lines
width meters apart (the points specify the centerline between the two); minefields are the same,

except minefield symbols should be drawn along the centerline; width may not be meaningful for
some line styles. Thickness is used to control the thickness of each drawn line segment. If dashed

is True, the style should be modified (if possible) to show the line in a dashed fashion (used by
the military to indicate that the information is uncertain). If splined is True, the workstation I
should use a splining function to smooth the line (if possible). The route flag is a user interface
convenience, provided to allow interfaces to distinguish between routes and other control measures.
The munition and density fields are used to attach munitions to the line, for instance minefields.
The units of density depend on the type of munition. I

Each point in a line hs an identifier unique to that line which a receiving entity can use to
determine the nature of ..anges. When a point is moved, its identifier should not change. When

a point is inserted, it should be given an identifier unique to the line. The identifier 0 is reserved,
and should not be used. A point is either a discrete location, or a reference to a road segment in
the terrain database. Road segments need a direction to indicate whether the road segment points

should be interpreted first-to-last or last-to-first.

A line is not valid (see Section 9.1.5 [Valid], page 50) unless its overlay is known to the receiving 1
simulator.

Any attribute of a line may be changed after initial creation, including its overlay. I
1type LineStyle enum (8) {

I
I

I Chapter 9: Protocol Specification 61

I
LSplain (1),
LSfrontA (2),
LSfrontB (3),
LSminefield (4),
LSminefieldAT (5),
LSminefieldAP (6),
LSberm (7),
LSATDitchA (8),
LSATDitch8 (9),
LSfortification (10),LSwire (11)

type ArrouHeadStyle enum (8) {
noArrovHead (0),
lineArrowHead (1),
blockArrowHead (2)

I type Direction enum (8)
firstToLast (1),
lastToFirst (2)

type RoadSegment sequence {

index Integer (32),
direction Direction,
fake Boolean,

unused (23)

type PointType enum (8) {
PTRoadSegment (1),
PTLocation (2)

type PointDescription sequence

pointNumber Integer (16),SpointType PointType,
unused (8),

variant choice (pointType) of

when (PTRoadSegment)
roadSegment RoadSegment,

when (PTLocation)
location PointLocation

I
I

62 LibPO Programmer's Guide

I
} I

}

type LineClass sequence {

-- Overlay to which this line belongs
overlayID Obj ectID,

style LineStyle,
color OverlayColor,
pointCount UnsignedInteger (8),
thickness UnsignedInteger (8), -- Pixels
width UnsignedInteger (16), -- Meters
beginArroiHead ArrowHeadStyle,I
endArrowHead ArrowHeadStyle,

-- Indicates if first point should be linked to last
closed Boolean,
-- Indicates that line segments should be dashed
dashed Boolean,
-- Indicates that a splining function should be used between vertices
splined Boolean, I
-- Indicates that the line is a route
route Boolean,

unused (12).
-- Indicates a munition attached to the line
munition ObjectType,
-- Indicates a density of the munition
density Float (32),

points array (pointCount) of PointDescription

}!

9.3.6.5 Sector Class

A sector has style, color, and thickness attributes as well as an origin and varics- radii. Thickness
is used to control the thickness of each drawn line segment. A sector originates at the specified
origin, and consists of a portion of a pie-slice shape bounded by two lines. Each bounding line
should be drawn from the minimum radius to the maximum radius (if the minimum radius and
the maximum radius are the same, no bounding line are drawn). Arcs should be drawn at each of
the radii specified in the array. These radii need not be within the bounds of the minimum and
maximum radii. If dashed is True, the style shoimi be modified (if possible) to show the sector in I
a dashed fashion (used by the military to indicate that the information is uncertain). I

I

I Chapter 9: Protocol Specification 63

I
A sector is not valid (see Section 9.1.5 [Valid], page 50) unless its overlay is known to the

receiving simulator.

Any attribute of a sector may be changed after initial creation, including its overlay.

type SectorStyle enum (8) {
SSplain (1)I

constant maxArcRadii 200

type SectorClass sequence {

I -- Overlay to which this sector belongs
overlayID Obj ectID,

style SectorStyle,
color OverlayColor,

I -- Origin of the arc

origin PointLocation,
-- Starting and ending points of the arc sides (0 means start at origin)
minRadius UnsignedInteger (32),
maxRadius UnsignedInteger (32),
-- SIMNET style angle of counter-clockwise most side
initialAngle Angle,
-- Magnitude of arc extent clockwise from initialAngle
extent Angle,

thickness Integer (8), -- Pixels

-- An arc should be drawn between the two sides at each listed radius
radiusCount UnsignedInteger (8),
dashed Boolean,

unused (15),
arcRadii array (radiusCount) of UnsignedInteger (32)

}

I
9.3.6.6 Text Class

Text has font, color, and location attributes as well as the overlay into which the text is grouped.
The alignment field is needed to compensate for differences in font definitions between different
simulators. The offset fields allow text to remain a fixed distance from the specified point, despiteI

I

64 LibPO Programmer's Guide

I
map scaling. Rather than having fixed label fields included in other graphic object classes (point,

line, etc.), each text item is represented individually. To label both ends of a line, for example,
two text objects must be created. This scheme greatly reduces bandwidth requirements when there

are many unlabeled graphics, and also allows different applications to handle labeling graphics

differently. Text with a length of zero is allowed, but discouraged.

Text is not valid (see Section 9.1.5 (Valid], page 50) unless its overlay is known to the receiving

simulator. Text with a non-zero associated object is valid only if that object is known to the

workstation.

Any attribute of a point may be changed after initial creation, including its overlay, and its
associated object.

Deleting text does not require deleting the associated object, however, deleting any other object

does require deleting text associated with that object. I

"type TextSize enum (8) { 1
"tinyText (0),
smallText (1),
mediumText (2),
largeText (3),
hugeText (4)

-- example of northWest alignment:

-- TEXT
-- (location)

type TextAlignment enum (8) { 1
northWest (1),
north (2).
northEast (3), I
west (4),
center (5),
east (6), I
southWest (7),
south (8),
southEast (9)

}

constant maxTextLength 1024

"type TextClass sequence I
I

Chapter 9: Protocol Specification 65

U
-- Overlay to which this text belongs
overlaylD Obj ectlD,

size TextSize,
color OverlayColor,
length Integer (16), -- Includes NULL terminator
-- Position of text relative to location
alignment TextAlignment,

unused (8),
location PointLocation,
horizontalOffset Integer (16), -- Pixels
verticalOffset Integer (16), -- Pixels

-- Associated Object or 0/0/0 if none
associatedObject ObjectlD,
-- If associatedObject is Line Class, identifies which point
associatedPointNuaber Integer (16),

N -- N terminatedt ext string
text array (length) of Integer (8)

I

9.3.6.7 Unit ClassI
A unit has many attributes. Object type is any valid SIMNET object type of any domain (ech-

elons, vehicles, etc.). The force ID, appearance, and marking fields are interpreted as in Simulation
Protocol Vehicle Appearance PDUs. The SIMNET object type uniquely identifies an echelon in the
common unit database (each simulator must identify which revision of the unit database it is using
in its Machine Present PDU to ensure compatibility). The formation template field identifies how
the member vehicles of this unit should be placed if displayed. If subordinates represented is True,
the application should not attempt to get subordinate information from the unit database regarding

I " this object. Each object can have both an organic and an attachment parent unit. The location
of the unit is its center of mass. The direction is the direction of the unit relative to the formation
database. Also, every subordinate unit is assumed to be facing this direction unless specifically
overridden with separate objects. The unit strength is an arbitrary measure in the range 0.0 to
1.0. The time date group indicates the time and date at which the information was first valid.

I . This may be before or after the time of the world state (see Section 9.1.4 [World State], page 49)
in which this object resides. If dashed is True, the unit symbol should be modified (if possible) to
draw in a dashed fashion (used by the military to indicate that the information is uncertain). If
dugIn is True, projections of the unit should be given a Z value somewhat lower than ground level
(exactly how much depends upon the objectType).I

I

66 LibPO Programmer's Guide

A unit is not valid (see Section 9.1.5 [Valid), page 50) unless its overlay is known to the receiving

simulator.

A task organization may transcend multiple overlays.

Any attribute of a unit may be changed after initial creation except object type and force ID.

Relationships between unit objects require a series of conventions to be followed by all applica-
tions. I

If any immediate subordinates of a unit are altered, objects representing all database derived
immediate subordinates of that unit must be maintained. For example, adjusting the location
of one platoon in a company requires that all other platoons and the company headquarters
vehicles be created as objects, and that the subordinates represented flag of the company be

set to True.

"* Attachment information is considered independent of unit database inquiries. For example,
attaching an individual veh: -e to a platoon does not require that the vehicles in that platoon

be represented, or that thei- locations be changed.

"* Applications are responsible for the integrity of all objects impacted by a change to a related
object. Center of mass, for example must be recalculated for all superior units when an inferior U
unit is changed.

" If any member of an organization is represented in a world state (see Section 9.1.4 [World
State], page 49), all known members of that organization must be represented in that world
state.

constant uaxFormationNameLength 36
constant ualUnitMunitions 8

type TiueDateGroup sequence{
time Unsignedlnteger (32), -- HNNMSS Idate UnsignedInteger (32), -- YYNMDD
secondsSince197O UnsignedInteger (32)

type SAFlethodology enum (8) {
SkFoethodFundamental (0),
SAFMethodSoar (1)

t
type Unit:Class sequence { I

I
U

Chapter 9: Protocol Specification 67

I
-- Address of workstation commanding this unit, if being simulated
commander SimulationAddress,
-- Address of host simulating this unit, if being simulated
simulator SimulationAddress,

-7 If being simulated, vehiclelD being used to simulate this unit
simulationlD VehicleID,

-- Desired SAF simulation methodology
methodology SAFMethodology,

-- The following are flags which are set by the user interface to
-- request that a specific field change be applied to the simulated
-- unit. Some fields which the simulation would not change (such as
-- marking) are always updated if the unit is changed, hence they do

-- not have a flag. Similarly, fields which the user interface
-- would not modify (such as objectType) do not need flags.
changeFormation Boolean,
changeLocation Boolean,
changeDirection Boolean,
changeUnitStrength Boolean,
changeMunitions Boolean,
changeAppearance Boolean,

unused (2),

-- Overlay to which this unit belongs
overlaylD ObjectID,
forceID ForcelD,
subordinatesfepresented Boolean,
dashed Boolean,

unused (1),
shouldBeSimulated Boolean,
simulated Boolean,

unused (3),
objectType ObjectType,
marking VehicleMarking,

-- NULL terminated formation name
formationTemplate array (maxFormationNameLength) of

Integer (8),

I- ID of organic parent (0/0/0 if not represented)
organicTo Obj ectID,
-- ID of attached parent (0/0/0 if same as organic)
attachedTo Obj ectID,

-- State information
location WorldCoordinates, -- Center of Mass
direction Angle, -- Orientation of Formation

I
I

68 LibPO Programmer's Guide

I
unitStrength Float (32). -- 0 <= unitStrength <a 1
timeDateGroup TimeDateGroup, -- Valid TDG of data
munitions array (MaxUnitHunitions) of

MunitionQuantity.
job UnsignedInteger (32), -- App. specific job
appearance UnsignedInteger (32), -- Appearance I
taskFrameStack ObjectID, -- Points to top task in a stack
backgroundFrame ObjectID, -- Background task
parameters ObjectID -- Point to ParametricInputHolder

}

I
9.3.6.8 Commo Class

A Commo object is similar to a radio net. Commo objects are used to transmit messages
between entities via the PO database.

The message portion of the commo should not be deleted.

constant maxCommoNessageLength 1024
constant maxCommoNameLength 32

type CommoClass sequence { I

name array (maxCommoNameLength) of Integer (8),
sender ObjectID, -- or a VehicleID

unused (16),

alignment TextAlignment,

class Integer (8), 1
associatedObj ect Obj ectID,

messageId Integer (32), I
message array (maxCommoNessageLength) of Integer (8)

} I

9.3.6.9 Stealth Controller Class 1
Stealth cont: oiler objects are used to manage control of available stealth vehicles. The ObjectID

of t-.. stealth controller object should be the VehiclelD of the stealth, to prevent accidental creation I
I

I Chapter 9: Protocol Specification 69

of more than one controller object. The controller field identifies the address of the machine which

is controlling the stealth.

The controller field may be changed after initial creation.

Stealth controller objects should not be deleted. If the database sequence number increases,
each simulator should replicate all stealth controller objects from the previous database to ensure
the objects are not lost. Applications should create a new stealth controller object for each stealth
heard in the SIMNET Stealth Protocol.

I To take control of a stealth vehicle, an application sets the controller field of the appropriate
stealth controller object to its own address. The controller is responsible for projecting Persistent
Object Protocol objects in the SIMNET Simulation Protocol as Vehicle Appearance Packets. If a
machine receives a stealth controller object which identifies it as the controller, it should project
vehicles as though it had volunteered. In this way, the user of one workstation can see in 3D the
objects being manipulated by another workstation.

I "type StealthControllerClass sequence {

-- Address of the controller
controller SimulationAddress

I }

9.3.6.10 H-Hour Class

I H-hour objects are used to create a relative time upon which other times may be based (e.g.,
execute this route at H-hour + 15). H-hour is measured against the Persistent Object Database
clock maintained via Simulator Present PDUs. The defined flag indicates whether the H-hour has
been set by a user, or is currently undefined. (An undefined H-hour is used by SAF to indicate

I . that units should hold until the H-hour is specified.)

Any attribute of an H-hour may be changed after initial creation.I
constant maxHHourNameLength 22

1 ~type HHourClass sequence{

I
I

70 LibPO Programmer's Guide

I
-- NULL terminated HHour name
name array (maxHlourNameLength) of

UnsignedInteger (8),

-- Force vhich is using this HHour
forceID ForceID,

-- Is this H-hour set?
defined Boolean,

unused (7),

-- Time in terms of PO time
time UnsignedInteger(32)

9.3.6.11 Task Class 1

A Task object represents an individual behavior of SAF vehicles or units, such as avoid col!'sions, 1

go to point, or follow road. Task behaviors are implemented as finite state machines which cnerate

on the state defined in the Task object. The unformatted data in the Task object contains the

state and argument data for the task. This data is interpreted by the task state machine which

implements the task. Task arguments which are references to other Persistent Objects must be

represented in the references section. 1
Any attribute of a Task may be changed after initial creation except for the size of the task

data.

A task is not valid (see Section 9.1.5 [Valid), page 50) unless its references are known to the |
receiving simulator. I

constant maxTaskPOReferences 16

type TaskClass sequence { I
-- Model name of task
model UnsignedInteger (32),

-- Frame that this task is in
frame ObjectID,

I
________1

Chapter 9: Protocol Specification 71

-- Number of references to other POs
refcount UnsignedInteger (8),

unused (8),

-- References to other P0's, (to be used as Task arguments)
references array (maxTaskP0References) of ObjectID,

-- Size of data for this task
size UnsignedInteger (16),

unused (16),

-- Data for this task
data array (size) of UnsignedInteger (8)

I

9.3.6.12 Task Frame Class

l A Task Frame object groups a collection of zero or more tasks which execute in parallel. Each
Task Object within a logical frame points back to this object via its 'frame' attribute.

U The name of the task frame is used only by the user interface, and for debugging. Frames are
linked together via the mission link to form a mission tree. Frames are linked together via the stackI link to form the stack of tasks being executed by a unit.

Certain Task Frames are opaque. When a task manager is assembling a list of tasks to run, all
tasks for each frame in a stack are considered until reaching an opaque frame. Versions of the same

task higher in the stack take precedence of those lower in the stack.I
Task Frames axe pushed onto vehicle stacks as follows. Only the vehicle representing the unit

I . can push a frame onto the unit's stack. Another agent can request that a frame be pushed by
* creating the frame and specifying the unit in the frame. Upon receipt, the vehicle representing the
unit may decide whether the task frame was received (if a radio model is being used), and it may

* decide whether to push the task frame onto its task frame stack.

Special tasks called Enabling Tasks live in the Task Frame. They have the feature that they are
only run when their frame is NOT active. The task manager which distributes tasks to units should
run each enabling task which belongs to a frame which has a 'previousMissionFrame' specified as

Sa currently executing frame. Note that enabling tasks must not have private state, since multiple
copies of the same task (with different parameters and public state) may be running bn the same

I
I

72 LibPO Programmer's Guide

vehicle. This should not be a problem, since enabling tasks axe not state machines, but rather

predicate functions. When the enabling task detects that its predicate is fulfilled, it is responsible

for starting the frame in which it resides.

Since enabling tasks are pointed at by frames, an enabling task should not point to 1 frame (else

you will get a circular PO structure). Hence, enabling tasks can be recognized by the fact that
they have (0/0/0) in their frame pointer.

A logic Stack is used to implement postfix boolean logic operations on what enabling tasks
must evaluate to true to activate this frame. This logic Stack is read starting at 0 and stops
when th, value taskFrameLogicStackSTOP is rearhed. Specific Enabling Tasks are referred to by

small indexs, and boolean operations are referred to by the constants taskFrameLogicStackOR,

taskFrameLogicStackAND, and taskFrameLogicStackNOT.

I
constant maxTaskFrameNameLength 32
constant maxTaskFrameEnablingTasks 32
constant taakFrameLogicStackSize 128 I
constant %askFrameLogicStackNOT 252
constant taxkFramaLogicStackOR 253
constant taskFrameLogicStackAND 254
constant task% rameLogicStackSTOP 255

type Tasknstallationnstruction enum (8)1

TIIPopNone (0), -- Just push this frame onto the stack
TIIPopNonOpaque (1), -- Pop all non-opaque frames down to the first

-- opaque frame, then push this frame
TIIPopOpaque (2) -- Pop all frames down to and including the

-- first opaque frame, then push this frame

I I
type TaskFrameClass sequence {

-- NULL terminated Task Frame name

name array (maxTaskFrameNameLength) of I
Unsignedinteger (8),

-- Whether tasks in frames stacked below this are hidden by this frame
opaque Boolean,

-- Whether this is a task frame which should be destroyed if the
-- unit ever stops executing it
destroyllhenDone Boolean,

unused (6), I
I
I

I Chapter 9: Protocol Specification 73

I
-- What to do to the task stack when this frame is executed/installed
instruction TaskInstallat ionInstruct ion,

-- Unit which is being requested to push this Frame onto it's stack
unit ObjectID,

-- Next pointer used to implement a Unit's Stack of Frames
nextStackFrame Obj ectID,

-- Previous Task Frame in the Mission
previousMissionFrame ObjectID,

I -° Postfix stack of logic operations to combine enabling tasks
logicStack array (taskFrameLogicStackSize) of

UnsignedInteger (8),

-- Tasks which are run when this frame is NOT active. Th~e
-- tasks may cause this frame to be executed by a unit
etaskCount UnsignedInteger (8),

unused (8),
enablingTask array (etaskCount) of ObjectID

i 9.3.6.13 Parametric Input Class

The Parametric Input Class is used to store parameters to a SAF model. A model is a functional
subsystem of a vehicle simulation, such as target selection. Large blocks of parameters can be
created by linking then together through the chain field. To ensure consistency, a chain is not valid
unless all elements of the chain have the same chain serial number.

Any attribute of a Parametric Input object may be changed after initial creation.

i constant maxParametricInputClassSize 1024

type ParametricInputClass sequence {

-- Link to next PI Class object (0/0/0 if this class is complete)
chain ObjectID,

-- Serial number common to all elements of a chain
chainSerial UnsignedInteger (8),

unused (8),

-- Size of the parametric data in this PI ClassI
I

74 LibPO Programmer's GuideIN II

size UnsignedInteger (16),
musu~d (16).

unused (32),

-- Data uue
3)

data array (size) of UnsignodInteger (8)

)I

9.3.6.14 Parametric Input Holder Class

A Parametric Input Holder Class contains a collection of Parametric Input objects. Each object
is tagged with a SAFModel identifier which indicates for what model the parametric data refers to.

Any attribute of a Parametric Input Holder object may be changed after initial creation except
for size.

type TaggedParamet: .:Input sequence { I

-- Model for which this parameter data is for
model UnsignedInteger (32),

-- Pointer to a Parametric Input Object
data ObjectID I}

constant maxParame:ricInputHolderlnputs 128

type ParametricInputHolderClass sequence

-- Number of parameters in the holder
size Unsignedlnteger(16),

unused (16),

-- array of tagged parameters
blocks array(size) of TaggedParametricInput

9.3.6.15 Exercise Object Class

iAn Exercise InitialIizer object is used to synchronize multiple simulators with the same exercise

I
I

I Chapter 9: Protocol Specification 75

I
information. It is only valid for one Exercise Initializer object to exist in the database at one time

(libpo ensures this). When a simulator receives an Exercise Initializer object for the first time,
or if it receives notification that this object has changed, the simulator should adjust itself to the
exercise parameters such as terrain database and battle scheme.

The Exercise Initializer object also broadcasts information about the simulation rate (a number
>= 0.0) that is in effect. If a simulator wants to change the simulation rate for all simulators in
the exercise, it will change this object and set the rateTimeStart field to be some PO time (see
Section 9.3.1 [Simulator Present PDU], page 52) in the future. The time chosen should be far
enough into the future so that all simulators can find out about the change before the rate actually

goes into effect.

I Any attribute of an Exercise Initializer object may be changed after initial creation.

type ExerciselnitializerClass sequence {

-- The terrain database chosen for the exercise:
terrain TerrainDatabaseID,

-- The battle scheme chosen for the exercise:
battleScheme BattleScheme,

unused (24),

-- The rate at which simulation should be running

simulationRate Float (32),

-- The P0 time when the simulationRate is valid
rateTimeSt art UnsignedInt eger (32)

!}

I 9.3.6.16 Describe Object PDU Definition

constant describe0bjectTransmitTime 30 -- seconds
constant describe0bjectTimeoutTime 72 -- seconds
constant describe0bjectRetransmitTime 300 -- seconds

type PersistentObjectClass enum (8)
objectClassWorldState (1),
objectClassOverlay (2),
objectClassPoint (3),I

I

76 LIbPO Proramm's Guide

I
objectClassLine (4),
objectClamsSactor (5),
objectClassText (6),
objactClassUnit (7),
objectClassStealthController (9),
objectClassHHour (10),
objectClassCoumo (12),
objectClassTask (13),
objectClassTaskFrame (14),
objectClassParametriclnput (15), I
objectClassParametriclnputHolder (16),
obj ectClassExerciseInitializer (17)

type DescribeObjectVariant sequence

-- Identity of the shared database
databaseSequenceNumber UnsignedInteger (32),

-- Identity of the object i
objectID ObjectIlD,

-- World State to which this object belongs or 0/0/0 if in the
-- Real Time World State
worldStateID Obj ectID,

-- Identity of the simulator which first currently takes
-- responsibility for this object
owner SimulationAddress,

-- Sequence number of this revision of the Object
sequenceNumber Unsignedlnteger (16).

class PeruistentObj ectClass,

-- If true, this object does not exist in this world state, however
-- it does exist in other world states.
missingFromWorldState Boolean,

unused (7),

variant choice (class) of {

when (obj ectClassWorldState) I
worldState WorldStateClass,

when (objectClassOverlay)
overlay OverlayClass,

when (objectClassPoint)
point PointClass,

I
i

IChapter 9: Protocol Specification 77

when (obj .ctClasaLine)Iline LineClass,

when (obj ectClassSector)
sector SectorClass,

when (obj ectClassTex%)
text TextClass,

when (obj ectClassUnit)
unit UnitClass,

when (obj ectClassStealthController)
stealthController StealthControllerClass,

I ~when (obj ectClassHHoizr)
liHour EliourCiass,

I ~when (obj ectClassComo)
COMMo ComoClass,

when Cobj ectClassTask)
task TaskClass,

when Cobj ectClassTaskFrame)ItaskFrame TaskFrameClass,

when (obj ectClassfarametriclnput)Iparametriclnput ParametriclnputClass,

when (obj ectClassParametriclnputHolder)I parametriclnputHolder ParametriclnputHolderClass,

when (obj ectCla~ssExerciselnitializer)
exerciselnitializer ExercisolnitializerClass

9.3.7 Objects Present PDU

I After sending an unchanged Describe Object PDU for five minutes, a simulator should stop
sending the full Describe Object PDU, and instead confirm that object's presence by including its
objectID/worldStatelfl pair and sequence number in an Objects Present PDU. Each of these PDUs
is transmitted once every 30 seconds.

78 LibPO Programmer's Guide

I
Upon receipt of an Objects Present PDU, each simulator should check whether it knows of the

objects included. If an object is known and the sequence number and owner are the same as that

known, the simulator should reset the timeout counter for that object. The receiver should send

an Object Request PDU identifying each object which does not meet this criteria.

As a space optimization, only one worldStatelD is allowed per Objects Present PDU. Each
objectlD should be paired with this worldStatelD to find its unique identifier.

constant objectsPresentTransmitTime 30 -- seconds
constant maxObj ectsPresent Count 10S

type abjectlIDSequencePair sequence {

obj ectID ObjectID,
sequenceNumber UnsignedInteger (16)

}

type ObjectsPresentVariant sequence { I

owner SimulationAddress,

worldStateID ObjectID, 1
obj ectCount UnsignedInteger (8),

unused (8) ,I
objects array (objectCount) of

Obj ectIDSequencePair

9.3.8 Object Request PDU 1
A simulator may issue an Object Request PDU in response to an Objects Present PDU for each I

object which is: I
@ unknown to the receiver,

e thought to be owned by a different simulator than that identified in the Objects Present PDU,

or I
I

I Chapter 9: Protocol Specification 79

I
a thought to have a lower sequence number than that given in the Objects Present PDU.

This way, in the unlikely event that a simulator missed all the normal retransmissions of a new
or changed object, it can still find out the object's state.

Upon receipt of an Object Request PDU, the simulator identified as the owner should move the
specified object out of its Object Present PDUs and restart the normal retransmission of the object
as though the object were just changed.

I A passive simulator (see Section 9.1.3 (Passive Simulator], page 49) should use this PDU to
get information regarding objects which it has filtered, or at startup to learn about the database.
Active simulators (see Section 9.1.2 [Active Simulator], page 49) should not send this PDU until
they have been on the net for some time, since their simulator present PDUs will automatically
trigger describe object PDU transmission for all objects.

This is the only PDU that a passive simulator is allowed to send.I
constant maxObjectRequestCount 150

type ObjectRequestVariant sequence

requestingSizulator SimulationAddress,

obj ectOwner Siaulationzddress,

worldStateID Obj ectID,

obj ectCoium UnsignedInteger (8),
unused (8),

objects array (objectCount) of ObjectlID

I
9.3.9 Delete Objects PDU

To remove persistent objects, the simulator must issue a Delete Objects PDU. The deleting
simulator should be prepared to rebroadcast the Delete Objects PDU in response to each Describe
Object PDU received regarding one of the objects for a duration of 5 minutes.I

I

80 LibPO Programmer's Guide

I
Upon receipt of a Delete Objects PDU, each simulator should delete the objects. If a simuator

is the owner if a deleted object, it should stop broadcasting PDUs regarding that object.

Class specific rules also exist which determine when other objects must be deleted because of
dependencies.

constant deleateObjectRetransmitTime 300 -- seconds 1

constant maxDeleteObjectsCount 120

type ObjectMlDorldStatelDPair sequence {

objectID ObjectID,
worldStateID Obj ectID

type DeleteObjectsVariant sequence {

deletirgSimulator SimulationAddress,

objectCount UnsignedInteger (8),
unused (24),

objects array (objectCount) of
Obj ectMInorldStatelnPair

} I
I

9.3.10 Set World State PDU 1

To set the current World State (see Section 9.1.4 [World State], page 49), the simulator must
issue a Set World State PDU. This PDU should be retransmitted every 10 seconds, for as long as
the simulator wishes to enforce this world state. If two simulators disagree about what the current
world state should be, the state of the world may toggle between two frames. This condition is
detectable (during the duration in which a simulator wishes to set the world state, it should not
hear Set World State PDUs from other simulators), so the application can remedy the situation if I
necessary.

A series of different Set World State PDUs can be sent out at arbitrary intervals, for an animation I
effect. I

I

Chapter 9: Protocol Specification

I
A simulator may choose to ignore this PDU. Doing so merely means that the user does not

want to see animation being controlled by another simulator. Similarly, a simulator may animate

privately without issuing this PDU. However, if objects are to be projected via the Simulation3 Protocol, this private behavior may be confusing.

Upon receipt of a Set World State PDU, at the simulator's discretion, the simulator will adjust
the state of all displayed objects to the version of each object correct for the spedified world state.
If the world state is not known to the simulator, it should not change the state of any objects. The
simulator may also set a simulated clock to the time specified in the PDU, and increment the clock
according to the factor identified in the PDU (this clock is for display only, subsequent world states
should not be triggered until a different Set World State PDU is received).

I A clock rate of +0.0 or -0.0 is used to indicate that simulated clocks on other machines should
not be incremented over time (such as when the user pauses the animation). After receiving a
setWorldStatePDU with a non-zero clock rate, and then not receiving any for 24 seconds, the
simulator should stop incrementing its clock.

The worldState field should refer to an object of class World State.

I constant setWorldStateTransmitTime 10 -- seconds

constant setWorldStateTimeoutTime 24 -- seconds

type SetWorldStateVariant sequence {

requestingSimulator SimulationAddress,

-- (Simulated time) / (real time) clock factor
clockRate Float (32),

-- Current clock time

secondsSincel970 UnsignedInteger (32),

worldState ObjectID,
unused (16)

* }

U 9.3.11 Nomination PDU

When a simulator is determined to have disappeared from the network (no Simulator Present

PDUs have been heard for 48 seconds), each simulator will compare its own stated load (the oneI
I

82 LibPO Programmer's Guide

transmitted in its own last Simulator Present PDU) with the load of other simulators on the

network. If its load is lower than the others, the simulator will immediately take ownership of

all overlay objects owned by the missing simulator. If its load is not the lowest, it must issue a

Nomination PDU identifying the simulator which should assume control for the missing simulator.

It is possible that two different simulators will not nominate the same simulator, however, the

procedures used to determine ownership will resolve these conflicts.

Upon receipt of a Nomination PDU, a simulator should first confirm that it agrees the identified m

simulator is down (that it has not heard a Simulator Present PDU from that simulator within the

last 48 seconds). If it does agree, the simulator should change the ownership field and increment

the sequence number of every object owned by the missing simulator, immediately broadcast the

new information, and then rebroadcast each object every 30 seconds thereafter. If it does not agree,

it should ignore the request unless the nominating simulator is the simulator identified as missing. I
In that case, the nominated simulator may assume ownership of the objects at its discretion. This
way, a simulator which detects an overload condition can ask for help with its packet handling

requirements. Also, a simulator which is brought down intentionally (by hitting quit, for example) I
can use this PDU to facilitate orderly transition of object ownership.

A nominated simulator should establish ownership of these objects before processing further

nomination PDUs. Doing so will lead to redundant nomination having little effect on performance.

It is unlikely that a simulator which missed the last few Simulator Present PDUs from a living

simulator will also choose itself as the least loaded simulator. Under normal circumstances, the I
nominated simulator will know that the missing simulator is actually present. However, if a bad

timeout does occur, the only consequence is that the errant simulator will unnecessary take over

objects from a live simulator on the network.

It is possible that when a simulator goes down, the objects owned by that simulator will be lost,
although it is unlikely. For this to happen, multiple simulators would have to disagree as to .'ho

is least loaded (which can happen if they miss one another's Simulator Present PDUs), and would

have to also miss each other's Nomination PDUs. Such catastrophic failure might result if network

hardware is interrupted, but is unlikely otherwise. I
type NominationVariant sequence {

nominatedSimulator SimulationAddress,
nominatingSimulator SirulationAddress,
missingSimulator Simi-alationAddress 3

I
I

IChapter 9: Protocol Specification 83

9.3.12 Top Level PDU

type PersistentObjectPDUKind mnum (8){
simulatorPresentPDUKind (1),
describeObjectPDUKind (2),
objectsPresentPDUKind (3),
objectftequestPDUKind (4),
deleteObjectsPDUKind (5),

setWorldStatePDUKind (6),
nominationPDUKind (7)

type PersistentObjectProtocolVersion enum (8){Iessetbetrtcleso~n1()
persixtentObjectProtocolVersionJun9I (1),
persistentObjectProtocolVersionL~ug9I (2),
persixtentObjectProtocolVersion~ug91 (3),
persistentObjectProtocolVersion~uep9l (4),
persixtentObjectProtocolVersion~uly92 (5),
peruistentObjectProtocolVersion~ov92 (6),

persistentObj ectProtocolVersionJan93 (8)

I type DatabaselD Unsignedlnteger (8)

3 ~type PersistintabjectPDU sequence{

version PersistentObjectProtocol Version,
kind PersistentObj ectPDUKind,
exercise ExerciseID,
database DatabaseID,

unused (32),

I variant choice (kind) of{

when Cu imulatorPresentPDUKind)I. imulatorPresent SimulatorPresentVariant,

when (describe~bj .ctPDUKind)I deucribeObject DescribeObjectVa~rimnt,

when (obj ectsProsentPDUKind)
obj ectsPrexent Obj ectsPresentVariant,

when (obj ectRequestPDUKind)

84 LibPO Programmerfs Guide

I
objectRequest Objectr questVariant,

when (deleteObj ect•sPDUKind)
delet•eObjects DleteObjectsVariant,

when (setWorldStatePDUKind)
setWorldState SetWorldStateVariant.,

when (nominat ionPDUKind)
nomination NominationVariant

I
I

9.4 Throughput

The packet loss rate on a Mips Magnum platform at 2200 pps environment is 1:1500. This
is not a significant loss rate (0.06%), so the maximum packet handling capacity of a Magnum is

something larger than 2200 pps. (2200 pps is the maximum output rate of a Magnum sending 100
byte packets). Assuming that a very small proportion of the packets will have to be copied from
the Lance descriptors to the rings, the raw packet handling rate of the machine is a good indication 1
of the number of objects which can be supported on the net. We can make this assumption

because the determination that a packet is redundant to information currently stored in memory

(the normal case) is a trivial comparison that can easily be done before the packet is copied into the
rings (similar to th-ý distance checks done on the CMC card in a tank simulator). Since an object
requires retransmission every 30 seconds, this leads to a maximum capacity'of 66,000 objects, with

the odds of missinf -a packet regarding a particular object 1 in 1500, and the odds of missing two
packets regarding ,:ie same object (and hence timing it out) are 1 in 22,500,000. 1

The packet loss rates will be higher when most of the packets received cannot be Altered (such as
when a large scenario is loaded, and hence many new objects are being created at once). However,

these peak load conditions should be rare, and the redundancy of the protocol should compensate
as soon as the network reverts to its normal state.

This throughput rating is a hardware-only evaluation. A larger limiter on throughput may be

the applications' ability to transmit PDUs and remain responsive to the user.

This protocol may be used in conjunction with the Simulation protocol, which could consume

as much as 1000 of the 2200 pps which the Lance can handle. This would reduce the throughput I
to 36,000 objects in a Warex size exercise. I

I

Chapter 9: Protocol Specification S5

The application level need for objects is relatively unbounded. For example, a theater-level

operation including detailed information about 6000 objects, with 1500 of those objects moving
from one world state (see Section 9.1.4 [World State], page 49) to another, yields only 40 world3 states which may be maintained at once (three weeks, assuming 12 hour updates).

[
I
i
I
i
I
I
i
I
I-
i
I
[
I
I

86LibPO Programmerfs Guide

86I
I
I
I
I
I
I
I
I
I
I
I
U
I
I
U
I
I

I Function Index 87

I
Function IndexI
A po-change.entry-aissing-flag 26

animation-event 14 po-change-object 23

animation-event h-A ler- 14 po-change-object-missing-flag 24

animation.timeout._event 14 po-cleazchange-flags 35
animation-tineout-event handler 14 po-control-tealth 37

po-copy.object-into-vs 27

D po-create 19

delete-all-event 12 po-create-object 21

de1et eal-ev entandler 12 po.create.vorld-state 22

po-delete-all 20

E po.delete.entries 30

Sentry.changed.event 10 po-delete-entry 30

entry.-changed-event.-handler 10 po.deletee-ezerc ise-initializat ion 39

entry-gone-ewe t 10 po-delete.object 29

entry one-ev and 1r....................10 po-delete-objects 29

exercise-initialization.event 15 po.destroy ... 19

exercise-intjalization.event .handler 15 po-entry.ovner 28
po_-.ind.base..orld.state 34

N potind.overlay 34
po-tind.simulator 293new._entry..event................................. 9 Poe-er 3

nefentr7yeventt.handler 9 Po-et-eer-...................................... 31

nev.object-event 10 po-et-exercise-initialization............... 38

new.object.event .handler 10 po-et-object 31

ne l.si l.ator-event 8 po -et.-siuulation -load 39

neu.simulator.event-.bandler 8 po-least-siulation.loaded.simulator 40

po.loadtile 36

O ponew-stealth 37
po-object-.color 35

object-.changeg2ail.led-vent....................... 12 po-process-packet 20

object-change --event 11 po-query-tor.all.entries 32
object-changed-event.. 11 po-uery-arxurrent-objects.................132

object.-g-hanged-event .. handler..... 11 po.save.all .. 35

object.gone..vent................................ 11 po-save-overlay 36obj ect.•one-ewent..handler 1 ose.zrceniilatn...............391
po-set .exercise.init ializat ion 39

overlay..con -irmation-bandler 8 po.set-.object.user-data 28

p po.set.simulation.Aoad 40

po.set.zorld-state 32
packets-missed-event 16 po.Asitu.lator-name 28

Spackets.-sissed-event.handler 16 po-start-uetwork-aniuation 33

po change-entry 25I
I

88 LibPO Programmer's Guide

I
po.stop.5etworki.an-t ion 34 •rld..state..chariging-.ent had ler 13

po.-tick .. 21 sand-handler .. 7

po.tin, .. 38 si•u lator4 one-event 9

project•event 15 si.ulator4one-event-handler 9

projecte.vent-.handler 15

world-state.changed.event 13

world-state--changed-event.-handler 13

query-handler 7 world-state-chaning.-event 13

I
I
I

II
U
I
I
I
I
I
I
I

U Index 89

I
IndexI

fA N
Active Simulator 49 new.entry.event 9

animation.event 14 new.entry.event.handler 9
anim ation.event.handler 14 new.object.event 10

animation-timeout.-event 14 new.object-event.handler 10
animation.timeout-event.handler 14 new-simulator.event 8

new.simulator-event.handler 8
C Nomination PDU 81

Changing a Persistent Object 56

Commo Class 68 0
Creating a Persistent Object 55 Object Classes 57

Creating a World State 55 Object Request PDU 78

D object-.change-failed.event 12
object.change.failed.event-handler 12

Delete Objects PDU................................79 object-changed.event 11

delete-all-event 12 object.changed-event.handler 11

delete-.alLevent.handler 12 objectgone.event 11

Describe Object PDU.............................. 54 object-4one-event.handler II
Describe Object PDU Definition 75 Objects Present PDU 77
E Overlay Class 58

overlay.confirmation-handler 8

entry-changed.event 10

entry.changed-event-handler i0 p
entry.4one.event 10 packets.missed.event 16
entry-one-event.handler 10 packets.missed.event-handler 16

Exercise Object Class 74 Parametric Input Class 73

exercise.initialization-event is Parametric Input Holder Class 74
exercise.initialization.event-handler is Passive Simulator 49

F po.change..entry 25
po.change.entry.missing-Rag 26

Functionality .. 1 po-change-object 23

I Functions................. 19 pochangeobject-missing ag 24

PO.CLASS..MASK 41
po.r.ear.change.flags 35

I H-Hour Class 69 po.controL-stealth 37

L po.copy.object.into-ws 27

po..create ... 19

Libpo ... 1 po.create.object 21
Line Class .. 60 po.create-world.state 22I

I

90 LibPO Programmer's Guide

I
PO.DATABASE 5 po•et-simulationioat 40

PO _DB _ENTRY 5 po.set-world-state 32

po.deletel 20 po.simulator.name 28
po-delete.entries 30 po..starxtnetwork~animation 33
po-delete-entry 30 PO.STEALTHCONTROLLER.DATA 43
po-delete-exercise.initialization 39 po.stop.network..animation 34
po-delete-object 29 PO.TASK.DATA 44
po.delete-objects 29 POTASKSFRAME..DATA 44

po.destroy .. 19 PO.TEXT-DATA 43
po-entry-owner 28 po-tick ... 21
po.errlist .. 17 po.tim e ... 38

po.errno .. 1T PO-UNIT _DATA 43 I
PO.EXERCISEJNITIALIZER-DATA 45 PO.WORLD.STATEDATA 42
po.find-base.world-state 34 Point Class ... 59
po.find-overlay 34 project.event 15

po-find-simulator 29 project.event-handler 15-

POYFULL.CLASS.MASK 41 Protocol Definition 5I
po4et.entry .. 31 Protocol Requirements 50
poget-.exercise.initialization 38 Protocol Specification 49

po4et.object 31 I
po.get..simulationload 39

POJHHOUR-DATA 43 Q
poieasLsimulationloaded.simulator 40 query.handler 7
POLINE.DATA 42
po.oad.le ... 36 3
po-new.stealth 37 S

PO.OBJECTCID 42 Sector Class .. 6!

PO.OBJECT..2LASS 41 send-handler ..

po.object.coior 35 Set World State PDU 80

PO-OBJECT.DESCRIBE 41 Simulator .. 49
PO-OVERLAY.DATA 42 Simulator Present PDU 52 3
POPARAMETRICNPUT.DATA 44 simulator-gone..event 9
PO-PARAMETRICJNPUT.HOLDERDATA 44 simulatorgone.event.handler 9
POPOINT-DATA 42 Stealth Controller Class 68
po.process.packet 20
po.query-for..aUlentries 32

po.query..for.current.objects 32 T I
po.reaL-time-world.state 17 Task Class ... 70

po.save.. l... 35 Task Frame Class 71

po.save-overlay 36 Terms .. 49 I
PO.SECTORDATA 43 Text Class .. 63
po-set.exercise-initialization 39 Throughput .. 84

po..-set.object.user.data 28 Time ... 32 5

Top Level PDU 83 I
I

• m at I I-1

I Index 91

I
U World State Class 57

Unit Class .. 65 world.state.c.hanged.event 13

Usage ... 3 world-state-changed-event-handler 13

world.state-changing.event 13
V world-state-c-hanging-event-h andler 13

Valid 50

3 w x
W orld State .. 49 X test ... 47I

I
I
I
I

I

I

I

I-
I.
I

I
I

92 LibPO Prog'rwmer5s Guide I

I
I
I
I
I
I
I
I

.3
I3
I
I
I
I
I
I
I
I

I
I

IAPPENDIX C7: VIDS PROTOCOL EXTENSION
I
I
U
I
I
I
I
I
I
I
I
I
,I
I
Ii
I

Appendix C7 VIDS Protocol ExtetWOfl

I TBS

I
I
I
I
I
I
I
I
I
I
I

I
1
I
I C7-1

I

